When I submit job spark in yarn cluster I see spark-UI I get 4 stages of jobs but, memory used is very low in all nodes and it says 0 out of 4 gb used. I guess that might be because I left it in default partition.
Files size ranges are betweenr 1 mb to 100 mb in s3. There are around 2700 files with size of 26 GB. And exactly same 2700 jobs were running in stage 2.
Is it worth to repartition something around 640 partitons, would it improve the performace? or
It doesn't matter if partition is granular than actually required? or
My submit parameters needs to be addressed?
Cluster details,
Cluster with 10 nodes
Overall memory 500 GB
Overall vCores 64
--excutor-memory 16 g
--num-executors 16
--executor-cores 1
Actually it runs on 17 cores out of 64. I dont want to increase the number of cores since others might use the cluster.
You partition, and repartition for following reasons:
To make sure we have enough work to distribute to the distinct cores in our cluster (nodes * cores_per_node). Obviously we need to tune the number of executors, cores per executor, and memory per executor to make that happen as intended.
To make sure we evenly distribute work: the smaller the partitions, the lesser the chance than one core might have much more work to do than all other cores. Skewed distribution can have a huge effect on total lapse time if the partitions are too big.
To keep partitions in managable sizes. Not to big, and not to small so we dont overtax GC. Also bigger partitions might have issues when we have non-linear O.
To small partitions will create too much process overhead.
As you might have noticed, there will be a goldilocks zone. Testing will help you determine ideal partition size.
Note that it is ok to have much more partitions than we have cores. Queuing partitions to be assigned a task is something that I design for.
Also make sure you configure your spark job properly otherwise:
Make sure you do not have too many executors. One or Very Few executors per node is more than enough. Fewer executors will have less overhead, as they work in shared memory space, and individual tasks are handled by threads instead of processes. There is a huge amount of overhead to starting up a process, but Threads are pretty lightweight.
Tasks need to talk to each other. If they are in the same executor, they can do that in-memory. If they are in different executors (processes), then that happens over a socket (overhead). If that is over multiple nodes, that happens over a traditional network connection (more overhead).
Assign enough memory to your executors. When using Yarn as the scheduler, it will fit the executors by default by their memory, not by the CPU you declare to use.
I do not know what your situation is (you made the node names invisible), but if you only have a single node with 15 cores, then 16 executors do not make sense. Instead, set it up with One executor, and 16 cores per executor.
Related
As per my research whenever we run the spark job we should not run the executors with more than 5 cores, if we increase the cores beyond the limit job will suffer due to bad I/O throughput.
my doubt is if we increase the number of executors and reduce the cores, even then these executors will be ending up in the same physical machine and those executors will be reading from the same disk and writing to the same disk, why will this not cause I/O throughput issue.
can consider
Apache Spark: The number of cores vs. the number of executors
use case for reference.
The core within the executor are like threads. So just like how more work is done if we increase parallelism, we should always keep in mind that there is a limit to it. Because we have to gather the results from those parallel tasks.
I'd like to understand partitioning in Spark.
I am running spark in local mode on windows 10.
My laptop has 2 physical cores and 4 logical cores.
1/ Terminology : to me, a core in spark = a thread. So a core in Spark is different than a physical core, right? A Spark core is associated to a task, right?
If so, since you need a thread for a partition, if my sparksql dataframe has 4 partitions, it needs 4 threads right?
2/ If I have 4 logical cores, does it mean that I can only run 4 concurrent threads at the same time on my laptop? So 4 in Spark?
3/ Setting the number of partitions : how to choose the number of partitions of my dataframe, so that further transformations and actions run as fast as possible?
-Should it have 4 partitions since my laptop has 4 logical cores?
-Is the number of partitions related to physical cores or logical cores?
-In spark documentations, it's written that you need 2-3 tasks per CPU. Since I have two physical coresn should the nb of partitions be equal to 4or6?
(I know that number of partitions will not have much effect on local mode, but this is just to understand)
Theres no such thing as a "spark core". If you are referring to options like --executor-cores then yes, that refers to how many tasks each executor will run concurrently.
You can set the number of concurrent tasks to whatever you want, but more than the number of logical cores you have probably won't give and advantage.
Number of partitions to use is situational. Without knowing the data or the transformations you are doing it's hard to give a number. Typical advice is to use just below a multiple of your total cores., for example, if you have 16 cores, maybe 47, 79, 127 and similar numbers just under a multiple of 16 are good to use. The reason for this is you want to make sure all cores are working (as little time as possible do you have resources idle, waiting for others to finish). but you leave a little extra to allow for speculative execution (spark may decide to run the same task twice if it is running slowly to see if it will go faster on a second try).
Picking the number is a bit of trial and error though, Take advantage of the spark job server to monitor how your tasks are running. Having few tasks with many of records each means you should probably increase the number of partitions, on the other hand, many partitions with only a few records each is also bad and you should try to reduce the partitioning in these cases.
I have a cluster with 4 nodes (each with 16 cores) using Spark 1.0.1.
I have an RDD which I've repartitioned so it has 200 partitions (hoping to increase the parallelism).
When I do a transformation (such as filter) on this RDD, I can't seem to get more than 64 tasks (my total number of cores across the 4 nodes) going at one point in time. By tasks, I mean the number of tasks that appear under the Application Spark UI. I tried explicitly setting the spark.default.parallelism to 128 (hoping I would get 128 tasks concurrently running) and verified this in the Application UI for the running application but this had no effect. Perhaps, this is ignored for a 'filter' and the default is the total number of cores available.
I'm fairly new with Spark so maybe I'm just missing or misunderstanding something fundamental. Any help would be appreciated.
This is correct behavior. Each "core" can execute exactly one task at a time, with each task corresponding to a partition. If your cluster only has 64 cores, you can only run at most 64 tasks at once.
You could run multiple workers per node to get more executors. That would give you more cores in the cluster. But however many cores you have, each core will run only one task at a time.
you can see the more details on the following thread
How does Spark paralellize slices to tasks/executors/workers?
My input dataset is about 150G.
I am setting
--conf spark.cores.max=100
--conf spark.executor.instances=20
--conf spark.executor.memory=8G
--conf spark.executor.cores=5
--conf spark.driver.memory=4G
but since data is not evenly distributed across executors, I kept getting
Container killed by YARN for exceeding memory limits. 9.0 GB of 9 GB physical memory used
here are my questions:
1. Did I not set up enough memory in the first place? I think 20 * 8G > 150G, but it's hard to make perfect distribution, so some executors will suffer
2. I think about repartition the input dataFrame, so how can I determine how many partition to set? the higher the better, or?
3. The error says "9 GB physical memory used", but i only set 8G to executor memory, where does the extra 1G come from?
Thank you!
When using yarn, there is another setting that figures into how big to make the yarn container request for your executors:
spark.yarn.executor.memoryOverhead
It defaults to 0.1 * your executor memory setting. It defines how much extra overhead memory to ask for in addition to what you specify as your executor memory. Try increasing this number first.
Also, a yarn container won't give you memory of an arbitrary size. It will only return containers allocated with a memory size that is a multiple of it's minimum allocation size, which is controlled by this setting:
yarn.scheduler.minimum-allocation-mb
Setting that to a smaller number will reduce the risk of you "overshooting" the amount you asked for.
I also typically set the below key to a value larger than my desired container size to ensure that the spark request is controlling how big my executors are, instead of yarn stomping on them. This is the maximum container size yarn will give out.
nodemanager.resource.memory-mb
The 9GB is composed of the 8GB executor memory which you add as a parameter, spark.yarn.executor.memoryOverhead which is set to .1, so the total memory of the container is spark.yarn.executor.memoryOverhead + (spark.yarn.executor.memoryOverhead * spark.yarn.executor.memoryOverhead) which is 8GB + (.1 * 8GB) ≈ 9GB.
You could run the entire process using a single executor, but this would take ages. To understand this you need to know the notion of partitions and tasks. The number of partition is defined by your input and the actions. For example, if you read a 150gb csv from hdfs and your hdfs blocksize is 128mb, you will end up with 150 * 1024 / 128 = 1200 partitions, which maps directly to 1200 tasks in the Spark UI.
Every single tasks will be picked up by an executor. You don't need to hold all the 150gb in memory ever. For example, when you have a single executor, you obviously won't benefit from the parallel capabilities of Spark, but it will just start at the first task, process the data, and save it back to the dfs, and start working on the next task.
What you should check:
How big are the input partitions? Is the input file splittable at all? If a single executor has to load a massive amount of memory, it will run out of memory for sure.
What kind of actions are you performing? For example, if you do a join with very low cardinality, you end up with a massive partitions because all the rows with a specific value, end up in the same partitions.
Very expensive or inefficient actions performed? Any cartesian product etc.
Hope this helps. Happy sparking!
I have two questions around performance tuning in Spark:
I understand one of the key things for controlling parallelism in the spark job is the number of partitions that exist in the RDD that is being processed, and then controlling the executors and cores processing these partitions. Can I assume this to be true:
# of executors * # of executor cores shoud be <= # of partitions. i.e to say one partition is always processed in one core of one executor. There is no point having more executors*cores than the number of partitions
I understand that having a high number of cores per executor can have a -ve impact on things like HDFS writes, but here's my second question, purely from a data processing point of view what is the difference between the two? For e.g. if I have 10 node cluster what would be the difference between these two jobs (assuming there's ample memory per node to process everything):
5 executors * 2 executor cores
2 executors * 5 executor cores
Assuming there's infinite memory and CPU, from a performance point of view should we expect the above two to perform the same?
Most of the time using larger executors (more memory, more cores) are better. One: larger executor with large memory can easily support broadcast joins and do away with shuffle. Second: since tasks are not created equal, statistically larger executors have better chance of surviving OOM issues.
The only problem with large executors is GC pauses. G1GC helps.
In my experience, if I had a cluster with 10 nodes, I would go for 20 spark executors. The details of the job matter a lot, so some testing will help determine the optional configuration.