I'm learning the pthread_cancel function and testing whether thread would be cancelled when it doesn't reach cancellation point. Thread is created by default attribute and make it running in add loop. But when cancellation request was sent and thread exit immediately. It doesn't reach cancellation point and I think it should not respond to the request immediately.
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
void *thread_func(void *arg)
{
int i;
int j;
int k;
k = 1;
/* add operation */
for (i=0; i<1000; ++i) {
for (j=0; j<10000;++j) {
++k; // maybe for(z=0; z<10000; ++z) added would
// be better
}
}
return (void *)10;
}
int main(void)
{
char *retval;
pthread_t tid;
if (pthread_create(&tid, NULL, thread_func, NULL) != 0) {
printf("create error\n");
}
if (pthread_cancel(tid) != 0) { // cancel thread
printf("cancel error\n");
}
pthread_join(tid, (void **)retval);
printf("main thread exit\n");
return 0;
}
To have a "cancellation point" you need to use pthread_setcancelstate() to disable cancellation at the start of your thread function and then enable it when you want. When a new thread is spawned, it has the cancel state "enabled" meaning it can be canceled immediately at any time.
Perhaps more to the point, you probably shouldn't use pthread_cancel() at all. For more on that, see here: Cancelling a thread using pthread_cancel : good practice or bad
Cancelling a thread never means that it will immediately cancel anything which is running. It would just post a request to that thread. pthread_cancel only cancels a thread at a cancellation point. The list of cancellation points are defined in the man page of pthreads. In the above thread, you don't have any code which is a cancellation point. So the thread will always complete and will never get canceled. You can increase the loop or put a print statement at the last line of your thread and you will see that it is always completing the thread.
But, if you change the below code to add usleep (it is one of the cancellation point as defined in the man pages), you can see that the thread terminates after usleep. Even if you run any number of times, the thread will only get terminated at the cancellation point that is immediately after usleep and not any other point.
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
void *thread_func(void *arg)
{
int i;
int j;
int k;
k = 1;
/* add operation */
for (i=0; i<1000; ++i) {
printf("Before - %d\n", i);
usleep(1);
printf("After - %d\n", i);
for (j=0; j<10000;++j) {
++k; // maybe for(z=0; z<10000; ++z) added would
// be better
}
printf("Never - %d\n", i);
}
printf("Normal Exit of thread\n");
return (void *)10;
}
int main(void)
{
char *retval;
pthread_t tid;
if (pthread_create(&tid, NULL, thread_func, NULL) != 0) {
printf("create error\n");
}
usleep(1000);
if (pthread_cancel(tid) != 0) { // cancel thread
printf("cancel error\n");
}
pthread_join(tid, (void **)retval);
printf("main thread exit\n");
return 0;
}
Related
Problem
I wish to be able to pause the execution of a thread from a different thread. Note the thread paused should not have to cooperate. The pausing of the target thread does not have to occur as soon as the pauser thread wants to pause. Delaying the pausing is allowed.
I cannot seem to find any information on this, as all searches yielded me results that use condition variables...
Ideas
use the scheduler and kernel syscalls to stop the thread from being scheduled again
use debugger syscalls to stop the target thread
OS-agnostic is preferable, but not a requirement. This likely will be very OS-dependent, as messing with scheduling and threads is a pretty low-level operation.
On a Unix-like OS, there's pthread_kill() which delivers a signal to a specified thread. You can arrange for that signal to have a handler which waits until told in some manner to resume.
Here's a simple example, where the "pause" just sleeps for a fixed time before resuming. Try on godbolt.
#include <unistd.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
void safe_print(const char *s) {
int saved_errno = errno;
if (write(1, s, strlen(s)) < 0) {
exit(1);
}
errno = saved_errno;
}
void sleep_msec(int msec) {
struct timespec t = {
.tv_sec = msec / 1000,
.tv_nsec = (msec % 1000) * 1000 * 1000
};
nanosleep(&t, NULL);
}
void *work(void *unused) {
(void) unused;
for (;;) {
safe_print("I am running!\n");
sleep_msec(100);
}
return NULL;
}
void handler(int sig) {
(void) sig;
safe_print("I am stopped.\n");
sleep_msec(500);
}
int main(void) {
pthread_t thr;
pthread_create(&thr, NULL, work, NULL);
sigset_t empty;
sigemptyset(&empty);
struct sigaction sa = {
.sa_handler = handler,
.sa_flags = 0,
};
sigemptyset(&sa.sa_mask);
sigaction(SIGUSR1, &sa, NULL);
for (int i = 0; i < 5; i++) {
sleep_msec(1000);
pthread_kill(thr, SIGUSR1);
}
pthread_cancel(thr);
pthread_join(thr, NULL);
return 0;
}
I'm reading the book, Modern Operation Systems by AS TANENBAUM and it gives an example explaining condition variable as below. It looks to me there is a deadlock and not sure what I miss.
Lets assume consumer thread starts first. Right after the_mutex is locked, consumer thread is blocked waiting for the condition variable, condc.
If producer is running at this time, the_mutex will still be locked, because consumer never releases it. So producer will also be blocked.
This looks to me a textbook deadlock issue. Did I miss something here? Thx
#include <stdio.h>
#include <pthread.h>
#define MAX 10000000000 /* Numbers to produce */
pthread_mutex_t the_mutex;
pthread_cond_t condc, condp;
int buffer = 0;
void* consumer(void *ptr) {
int i;
for (i = 1; i <= MAX; i++) {
pthread_mutex_lock(&the_mutex); /* lock mutex */
/*thread is blocked waiting for condc */
while (buffer == 0) pthread_cond_wait(&condc, &the_mutex);
buffer = 0;
pthread_cond_signal(&condp);
pthread_mutex_unlock(&the_mutex);
}
pthread_exit(0);
}
void* producer(void *ptr) {
int i;
for (i = 1; i <= MAX; i++) {
pthread_mutex_lock(&the_mutex); /* Lock mutex */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i;
pthread_cond_signal(&condc);
pthread_mutex_unlock(&the_mutex);
}
pthread_exit(0);
}
int main(int argc, char **argv) {
pthread_t pro, con;
//Simplified main function, ignores init and destroy for simplicity
// Create the threads
pthread_create(&con, NULL, consumer, NULL);
pthread_create(&pro, NULL, producer, NULL);
}
When you wait on a condition variable, the associated mutex is released for the duration of the wait (that's why you pass the mutex to pthread_cond_wait).
When pthread_cond_wait returns, the mutex is always locked again.
Keeping this in mind, you can follow the logic of the example.
In Linux, I am emulating an embedded system that has one thread that gets messages delivered to the outside world. If some thread detects an insurmountable problem, my goal is to stop all the other threads in their tracks (leaving useful stack traces) and allow only the message delivery thread to continue. So in my emulation environment, I want to "pthread_kill(tid, SIGnal)" each "tid". (I have a list. I'm using SIGTSTP.) Unfortunately, only one thread is getting the signal. "sigprocmask()" is not able to unmask the signal. Here is my current (non-working) handler:
void
wait_until_death(int sig)
{
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, sig);
sigprocmask(SIG_UNBLOCK, &mask, NULL);
for (;;)
pause();
}
I get verification that all the pthread_kill()'s get invoked, but only one thread has the handler in the stack trace. Can this be done?
This minimal example seems to function in the manner you want - all the threads except the main thread end up waiting in wait_until_death():
#include <stdio.h>
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#define NTHREADS 10
pthread_barrier_t barrier;
void
wait_until_death(int sig)
{
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, sig);
sigprocmask(SIG_UNBLOCK, &mask, NULL);
for (;;)
pause();
}
void *thread_func(void *arg)
{
pthread_barrier_wait(&barrier);
for (;;)
pause();
}
int main(int argc, char *argv[])
{
const int thread_signal = SIGTSTP;
const struct sigaction sa = { .sa_handler = wait_until_death };
int i;
pthread_t thread[NTHREADS];
pthread_barrier_init(&barrier, NULL, NTHREADS + 1);
sigaction(thread_signal, &sa, NULL);
for (i = 0; i < NTHREADS; i++)
pthread_create(&thread[i], NULL, thread_func, NULL);
pthread_barrier_wait(&barrier);
for (i = 0; i < NTHREADS; i++)
pthread_kill(thread[i], thread_signal);
fprintf(stderr, "All threads signalled.\n");
for (;;)
pause();
return 0;
}
Note that unblocking the signal in the wait_until_death() isn't required: the signal mask is per-thread, and the thread that is executing the signal handler isn't going to be signalled again.
Presumably the problem is in how you are installing the signal handler, or setting up thread signal masks.
This is impossible. The problem is that some of the threads you stop may hold locks that the thread you want to continue running requires in order to continue making forward progress. Just abandon this idea entirely. Trust me, this will only cause you great pain.
If you literally must do it, have all the other threads call a conditional yielding point at known safe places where they hold no lock that can prevent any other thread from reaching its next conditional yielding point. But this is very difficult to get right and is very prone to deadlock and I strongly advise not trying it.
Can anyone shed light on the reason that when the below code is compiled and run on OSX the 'bartender' thread skips through the sem_wait() in what seems like a random manner and yet when compiled and run on a Linux machine the sem_wait() holds the thread until the relative call to sem_post() is made, as would be expected?
I am currently learning not only POSIX threads but concurrency as a whole so absoutely any comments, tips and insights are warmly welcomed...
Thanks in advance.
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
//using namespace std;
#define NSTUDENTS 30
#define MAX_SERVINGS 100
void* student(void* ptr);
void get_serving(int id);
void drink_and_think();
void* bartender(void* ptr);
void refill_barrel();
// This shared variable gives the number of servings currently in the barrel
int servings = 10;
// Define here your semaphores and any other shared data
sem_t *mutex_stu;
sem_t *mutex_bar;
int main() {
static const char *semname1 = "Semaphore1";
static const char *semname2 = "Semaphore2";
pthread_t tid;
mutex_stu = sem_open(semname1, O_CREAT, 0777, 0);
if (mutex_stu == SEM_FAILED)
{
fprintf(stderr, "%s\n", "ERROR creating semaphore semname1");
exit(EXIT_FAILURE);
}
mutex_bar = sem_open(semname2, O_CREAT, 0777, 1);
if (mutex_bar == SEM_FAILED)
{
fprintf(stderr, "%s\n", "ERROR creating semaphore semname2");
exit(EXIT_FAILURE);
}
pthread_create(&tid, NULL, bartender, &tid);
for(int i=0; i < NSTUDENTS; ++i) {
pthread_create(&tid, NULL, student, &tid);
}
pthread_join(tid, NULL);
sem_unlink(semname1);
sem_unlink(semname2);
printf("Exiting the program...\n");
}
//Called by a student process. Do not modify this.
void drink_and_think() {
// Sleep time in milliseconds
int st = rand() % 10;
sleep(st);
}
// Called by a student process. Do not modify this.
void get_serving(int id) {
if (servings > 0) {
servings -= 1;
} else {
servings = 0;
}
printf("ID %d got a serving. %d left\n", id, servings);
}
// Called by the bartender process.
void refill_barrel()
{
servings = 1 + rand() % 10;
printf("Barrel refilled up to -> %d\n", servings);
}
//-- Implement a synchronized version of the student
void* student(void* ptr) {
int id = *(int*)ptr;
printf("Started student %d\n", id);
while(1) {
sem_wait(mutex_stu);
if(servings > 0) {
get_serving(id);
} else {
sem_post(mutex_bar);
continue;
}
sem_post(mutex_stu);
drink_and_think();
}
return NULL;
}
//-- Implement a synchronized version of the bartender
void* bartender(void* ptr) {
int id = *(int*)ptr;
printf("Started bartender %d\n", id);
//sleep(5);
while(1) {
sem_wait(mutex_bar);
if(servings <= 0) {
refill_barrel();
} else {
printf("Bar skipped sem_wait()!\n");
}
sem_post(mutex_stu);
}
return NULL;
}
The first time you run the program, you're creating named semaphores with initial values, but since your threads never exit (they're infinite loops), you never get to the sem_unlink calls to delete those semaphores. If you kill the program (with ctrl-C or any other way), the semaphores will still exist in whatever state they are in. So if you run the program again, the sem_open calls will succeed (because you don't use O_EXCL), but they won't reset the semaphore value or state, so they might be in some odd state.
So you should make sure to call sem_unlink when the program STARTS, before calling sem_open. Better yet, don't use named semaphores at all -- use sem_init to initialize a couple of unnamed semaphores instead.
I tried to find a solution in order to keep the number of working threads constant under linux in C using pthreads, but I seem to be unable to fully understand what's wrong with the following code:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int jobs = MAX_JOBS;
int worker = 0;
int counter = 0;
void *functionC() {
pthread_mutex_lock(&mutex1);
worker++;
counter++;
printf("Counter value: %d\n",counter);
pthread_mutex_unlock(&mutex1);
// Do something...
sleep(4);
pthread_mutex_lock(&mutex1);
jobs--;
worker--;
printf(" >>> Job done: %d\n",jobs);
pthread_mutex_unlock(&mutex1);
}
int main(int argc, char *argv[]) {
int i=0, j=0;
pthread_t thread[MAX_JOBS];
// Create threads if the number of working threads doesn't exceed MAX_THREADS
while (1) {
if (worker > MAX_THREADS) {
printf(" +++ In queue: %d\n", worker);
sleep(1);
} else {
//printf(" +++ Creating new thread: %d\n", worker);
pthread_create(&thread[i], NULL, &functionC, NULL);
//printf("%d",worker);
i++;
}
if (i == MAX_JOBS) break;
}
// Wait all threads to finish
for (j=0;j<MAX_JOBS;j++) {
pthread_join(thread[j], NULL);
}
return(0);
}
A while (1) loop keeps creating threads if the number of working threads is under a certain threshold. A mutex is supposed to lock the critical sections every time the global counter of the working threads is incremented (thread creation) and decremented (job is done). I thought it could work fine and for the most part it does, but weird things happen...
For instance, if I comment (as it is in this snippet) the printf //printf(" +++ Creating new thread: %d\n", worker); the while (1) seems to generate a random number (18-25 in my experience) threads (functionC prints out "Counter value: from 1 to 18-25"...) at a time instead of respecting the IF condition inside the loop. If I include the printf the loop seems to behave "almost" in the right way... This seems to hint that there's a missing "mutex" condition that I should add to the loop in main() to effectively lock the thread when MAX_THREADS is reached but after changing a LOT of times this code for the past few days I'm a bit lost, now. What am I missing?
Please, let me know what I should change in order to keep the number of threads constant it doesn't seem that I'm too far from the solution... Hopefully... :-)
Thanks in advance!
Your problem is that worker is not incremented until the new thread actually starts and gets to run - in the meantime, the main thread loops around, checks workers, finds that it hasn't changed, and starts another thread. It can repeat this many times, creating far too many threads.
So, you need to increment worker in the main thread, when you've decided to create a new thread.
You have another problem - you should be using condition variables to let the main thread sleep until it should start another thread, not using a busy-wait loop with a sleep(1); in it. The complete fixed code would look like:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond1 = PTHREAD_COND_INITIALIZER;
int jobs = MAX_JOBS;
int workers = 0;
int counter = 0;
void *functionC() {
pthread_mutex_lock(&mutex1);
counter++;
printf("Counter value: %d\n",counter);
pthread_mutex_unlock(&mutex1);
// Do something...
sleep(4);
pthread_mutex_lock(&mutex1);
jobs--;
printf(" >>> Job done: %d\n",jobs);
/* Worker is about to exit, so decrement count and wakeup main thread */
workers--;
pthread_cond_signal(&cond1);
pthread_mutex_unlock(&mutex1);
return NULL;
}
int main(int argc, char *argv[]) {
int i=0, j=0;
pthread_t thread[MAX_JOBS];
// Create threads if the number of working threads doesn't exceed MAX_THREADS
while (i < MAX_JOBS) {
/* Block on condition variable until there are insufficient workers running */
pthread_mutex_lock(&mutex1);
while (workers >= MAX_THREADS)
pthread_cond_wait(&cond1, &mutex1);
/* Another worker will be running shortly */
workers++;
pthread_mutex_unlock(&mutex1);
pthread_create(&thread[i], NULL, &functionC, NULL);
i++;
}
// Wait all threads to finish
for (j=0;j<MAX_JOBS;j++) {
pthread_join(thread[j], NULL);
}
return(0);
}
Note that even though this works, it isn't ideal - it's best to create the number of threads you want up-front, and have them loop around, waiting for work. This is because creating and destroying threads has significant overhead, and because it often simplifies resource management. A version of your code rewritten to work like this would look like:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int jobs = MAX_JOBS;
int counter = 0;
void *functionC()
{
int running_job;
pthread_mutex_lock(&mutex1);
counter++;
printf("Counter value: %d\n",counter);
while (jobs > 0) {
running_job = jobs--;
pthread_mutex_unlock(&mutex1);
printf(" >>> Job starting: %d\n", running_job);
// Do something...
sleep(4);
printf(" >>> Job done: %d\n", running_job);
pthread_mutex_lock(&mutex1);
}
pthread_mutex_unlock(&mutex1);
return NULL;
}
int main(int argc, char *argv[]) {
int i;
pthread_t thread[MAX_THREADS];
for (i = 0; i < MAX_THREADS; i++)
pthread_create(&thread[i], NULL, &functionC, NULL);
// Wait all threads to finish
for (i = 0; i < MAX_THREADS; i++)
pthread_join(thread[i], NULL);
return 0;
}