I am trying to convert a .wav music file into something playable at beep command.
I need to export the frequencies to a text format to use as input parameters at beep.
Ps.: It is not about Speech Transcription.
The beep command in linux is only to control de pc-speaker. It only allows one frequency simultaneously and doesn't apply. A wav file is a file of samples that normally carries music (music is made of a lot of simultaneous frequencies)
You cannot convert a wav file to play it on the pc-speaker. You need a sound card to do that.
As you say, it's not voice recognition, but even in that case, a violin simple note sounds different than a guitar one, because it carries not only a single frequency in it. There are what is called harmonics, different components at different frequencies (normally multiples of the original frequency) that makes the sound different (not only the frequencies matter, also the relative intensities of them) and that is impossible to reproduce with a tool that only allows you to play a single frequency, with a given shape (the wave is not sinusoidal, but have several already included harmonics, that make it sound like a pc speaker) and no intensity capable.
Related
I have used FFMPEG to extract decibel (or rms? I am not familiar with the units) values of the audio volume from an mp4. I have 20 samples per frame.
How can I use these values (which are negative in almost all frames), to determine if the frame is silent or has audio (music, speech, etc)?
I need to be able to analyze (search thru) hundreds of WAV files and detect but not remove static noise. As done currently now, I must listen to each conversation and find the characteristic noise/static manually, which takes too much time. Ideally, I would need a program that can read each new WAV file and be able to detect characteristic signatures of the static noise such as periods of bursts of white noise or full audio band, high amplitude noise (like AM radio noise over phone conversation such as a wall of white noise) or bursts of peek high frequency high amplitude (as in crackling on the phone line) in a background of normal voice. I do not need to remove the noise but simply detect it and flag the recording for further troubleshooting. Ideas?
I can listen to the recordings and find the static or crackling but this takes time. I need an automated or batch process that can run on its own and flag the troubled call recordings (WAV files for a phone PBX). These are SIP and analog conversations depending on the leg of the conversation so RTSP/SIP packet analysis might be an option, but the raw WAV file is the simplest. I can use Audacity, but this still requires opening each file and looking at the visual representation of the audio spectrometry and is only a little faster than listening to each call but still cumbersome.
I currently have no code or methods for this task. I simply listen to each call wav file to find the noise.
I need a batch Wav file search that can render wav file recordings that contain the characteristic noise or static or crackling over the recording phone conversation.
Unless you can tell the program how the noise looks like, it's going to be challenging to run any sort of batch processing. I was facing a similar challenge and that prompted me to develop (free and open source) software to help user in audio exploration, analysis and signal separation:
App: https://audioexplorer.online/
Docs: https://tracek.github.io/audio-explorer/
Source code: https://github.com/tracek/audio-explorer
Essentially, it visualises audio as a 2d scatter plot rather than only "linear", as in waveform or spectrogram. When you upload audio the following happens:
Onsets are detected (based on high-frequency content algorithm from aubio) according to the threshold you set. Set it to None if you want all.
Per each audio fragment, calculate audio features based on your selection. There's no universal best set of features, all depends on the application. You might try for starter with e.g. Pitch statistics. Consider setting proper values for bandpass filter and sample length (that's the length of audio fragment we're going to use). Sample length could be in future established dynamically. Check docs for more info.
The result is that for each fragment you have many features, e.g. 6 or 60. That means we have then k-dimensional (where k is number of features) structure, which we then project to 2d space with dimensionality reduction algorithm of your selection. Uniform Manifold Approximation and Projection is a sound choice.
In theory, the resulting embedding should be such that similar sounds (according to features we have selected) are closely together, while different further apart. Your noise should be now separated from your "not noise" and form cluster.
When you hover over the graph, in right-upper corner a set of icons appears. One is lasso selection. Use it to mark points, inspect spectrogram and e.g. download table with features that describe that signal. At that moment you can also reduce the noise (extra button appears) in a similar way to Audacity - it analyses the spectrum and reduces these frequencies with some smoothing.
It does not completely solve your problem right now, but could severely cut the effort. Going through hundreds of wavs could take better part of the day, but you will be done. Want it automated? There's CLI (command-line interface) that I am developing at the same time. In not-too-distant future it should take what you have labelled as noise and signal and then use supervised machine learning to go through everything in batch mode.
Suggestions / feedback? Drop an issue on GitHub.
I have created a really basic FFT visualizer using a Teensy microcontroller, a display panel, and a pair of headphone jacks. I used kosme's FFT library for Arduino: https://github.com/kosme/arduinoFFT
Analog audio flows into the headphone input and to a junction where the microcontroller samples it. That junction is also connected to an audio out jack so that audio can be passed to some speakers.
This is all fine and good, but currently I'm only sampling the left audio channel. Any time music is stereo separated, the visualization cannot account for any sound on the right channel. I want to rectify this but I'm not sure whether I should start with hardware or software.
Is there a circuit I should build to mix the left and right audio channels? I figure I could do something like so:
But I'm pretty sure that my schematic is misguided. I included bias voltage to try and DC couple the audio signal so that it will properly ride over the diodes. Making sure that the output matches the input is important to me though.
Or maybe should this best be approached in software? Should I instead just be sampling both channels separately and then doing some math to combine them?
Combining the stereo channels of one end of the fork without combining the other two is very difficult. Working in software is much easier.
If you take two sets of samples, you've doubled the amount of math that the microcontroller needs to do.
But if you take readings from both pins and divide them by two, you can add them together and have one set of samples which represents the 'mono' signal.
Keep in mind that human ears have an uneven response to sound volumes, so a 'medium' volume reading on both pins, summed and halved, will result in a 'lower-medium' value. It's better to divide by 1.5 or 1.75 if you can spare the cycles for more complicated division.
I need to take short sound samples every 5 seconds, and then upload these to our cloud server.
I then need to find a way to compare / check if that sample is part of a full long audio file.
The samples will be recorded from a phones microphone, so they will indeed not be exact.
I know this topic can get quite technical and complex, but I am sure there must be some libraries or online services that can assist in this complex audio matching / pairing.
One idea was to use a audio to text conversion service and then do matching based on the actual dialog. However this does not feel efficient to me. Where as matching based on actual sound frequencies or patterns would be a lot more efficient.
I know there are services out there such as Shazam that do this type of audio matching. However I would imagine their services are all propriety.
Some factors that could influence it:
Both audio samples with be timestamped. So we donot have to search through the entire sound clip.
To give you traction on getting an answer you need to focus on an answerable question where you have done battle and show your code
Off top of my head I would walk across the audio to pluck out a bucket of several samples ... then slide your bucket across several samples and perform another bucket pluck operation ... allow each bucket to contain overlap samples also contained in previous bucket as well as next bucket ... less samples quicker computation more samples greater accuracy to an extent YMMV
... feed each bucket into a Fourier Transform to render the time domain input audio into its frequency domain counterpart ... record into a database salient attributes of the FFT of each bucket like what are the X frequencies having most energy (greatest magnitude on your FFT)
... also perhaps store the standard deviation of those top X frequencies with respect to their energy (how disperse are those frequencies) ... define additional such attributes as needed ... for such a frequency domain approach to work you need relatively few samples in each bucket since FFT works on periodic time series data so if you feed it 500 milliseconds of complex audio like speech or music you no longer have periodic audio, instead you have mush
Then once all existing audio has been sent through above processing do same to your live new audio then identify what prior audio contains most similar sequence of buckets matching your current audio input ... use a Bayesian approach so your guesses have probabilistic weights attached which lend themselves to real-time updates
Sounds like a very cool project good luck ... here are some audio fingerprint resources
does audio clip A appear in audio file B
Detecting audio inside audio [Audio Recognition]
Detecting audio inside audio [Audio Recognition]
Detecting a specific pattern from a FFT in Arduino
Detecting a specific pattern from a FFT in Arduino
Audio Fingerprinting using the AudioContext API
https://news.ycombinator.com/item?id=21436414
https://iq.opengenus.org/audio-fingerprinting/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Detecting a specific pattern from a FFT
Detecting a specific pattern from a FFT in Arduino
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint
SO followup
How to compare / match two non-identical sound clips
How to compare / match two non-identical sound clips
Audio fingerprinting and recognition in Python
https://github.com/worldveil/dejavu
Audio Fingerprinting with Python and Numpy
http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/
MusicBrainz: an open music encyclopedia (musicbrainz.org)
https://news.ycombinator.com/item?id=14478515
https://acoustid.org/chromaprint
How does Chromaprint work?
https://oxygene.sk/2011/01/how-does-chromaprint-work/
https://acoustid.org/
MusicBrainz is an open music encyclopedia that collects music metadata and makes it available to the public.
https://musicbrainz.org/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Audio Matching (Audio Fingerprinting)
Is it possible to compare two similar songs given their wav files?
Is it possible to compare two similar songs given their wav files?
audio hash
https://en.wikipedia.org/wiki/Hash_function#Finding_similar_records
audio fingerprint
https://encrypted.google.com/search?hl=en&pws=0&q=python+audio+fingerprinting
ACRCloud
https://www.acrcloud.com/
How to recognize a music sample using Python and Gracenote?
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint
If I know the SoundFont that a MIDI to audio track has used, can I theoretically reverse the audio back into it's (most likely) MIDI components? If so, what would be one of the best approach to doing this?
The end goal is to try encoding audio (even voice samples) into MIDI such that I can reproduce the original audio in MIDI format better than, say, BearFileConverter. Hopefully with better results than just bandpass filters or FFT.
And no, this is not for any lossy audio compression or sheet transcription, this is mostly for my curiosity.
For monophonic music only, with no background sound, and if your SoundFont synthesis engine and your record sample rates are exactly matched (synchronized to 1ppm or better, have no additional effects, also both using a known A440 reference frequency, known intonation, etc.), then you can try using a set of cross correlations of your recorded audio against a set of synthesized waveform samples at each MIDI pitch from your a-priori known font to create a time line of statistical likelihoods for each MIDI note. Find the local maxima across your pitch range, threshold, and peak pick to find the most likely MIDI note onset times.
Another possibility is sliding sound fingerprinting, but at an even higher computational cost.
This fails in real life due to imperfectly matched sample rates plus added noise, speaker and room acoustic effects, multi-path reverb, and etc. You might also get false positives for note waveforms that are very similar to their own overtones. Voice samples vary even more from any template.
Forget bandpass filters or looking for FFT magnitude peaks, as this works reliably only for close to pure sinewaves, which very few musical instruments or interesting fonts sound like (or are as boring as).