Related
I'm trying to learn the basics of assembly but can't get across on how to display results stored in memory.
section .data
num1 db 1,2,3,4,5
num2 db 1,2,3,4,5
output: db 'The dot product is "'
outputLen1 : equ $-output
output2: db '" in Hex!', 10
output2Len : equ $-output2
section .bss
dotProd resw 1 ; store dot product in here
section .text
global _start
_start:
mov eax, 0
mov ecx, 5
mov edi, 0
mov esi, 0
looper: mov ax, [edi + num1]
mov dx, [esi + num2]
mul dx
add [dotProd], ax
cmp cx, 1
je printOutput
inc edi
inc esi
dec cx
jmp looper ; go back to looper
printOutput:
mov eax,4 ; The system call for write (sys_write)
mov ebx,1 ; File descriptor 1 - standard output
mov ecx, output ;
mov edx, outputLen1 ;
int 80h ; Call the kernel
mov eax, 4
mov ebx, 1
mov ecx, dotProd,
mov edx, 1
int 80h
mov eax, 4
mov ebx, 1
mov ecx, output2,
mov edx, output2Len
int 80h
jmp done
done:
mov eax,1 ; The system call for exit (sys_exit)
mov ebx,0 ; Exit with return code of 0 (no error)
int 80h
What I'm trying to do is get the dot product of the two list of numbers and display it on the screen. However, I keep getting random letters which I believe are hex representations of the real decimal value. How can I convert it to decimal? The current value display is 7, which should is the equivalent ASCII char for 55, which in this case is the dot product of both list of numbers.
esi and edi must be increased such that it points to next element of array.(in this particular example, only one of them is sufficient).
declare mun1 andnum2 as dd, instead of db (see here).
Also, you have to have method for printing number.(see this and this).
Below is a complete code which uses printf.
;file_name:test.asm
;assemble and link with:
;nasm -f elf test.asm && gcc -m32 -o test test.o
extern printf
%macro push_reg 0
push eax
push ebx
push ecx
push edx
%endmacro
%macro pop_reg 0
pop edx
pop ecx
pop ebx
pop eax
%endmacro
section .data
num1: dd 1,2,3,4,5
num2: dd 1,2,3,4,5
msg: db "Dot product is %d",10,0
section .bss
dotProd resd 1 ; store dot product in here
section .text
global main
main:
mov eax, 0
mov ecx, 5
mov edx, 0
mov esi, 0
mov dword[dotProd], 0h
looper: mov eax, dword[esi + num1]
mov edx, dword[esi + num2]
mul edx
add [dotProd], eax
cmp cx, 1
je printOutput
add esi,4
dec cx
jmp looper ; go back to looper
printOutput:
push_reg
push dword[dotProd]
push dword msg
call printf
add esp,8
pop_reg
jmp done
done:
mov eax,1 ; The system call for exit (sys_exit)
mov ebx,0 ; Exit with return code of 0 (no error)
int 80h
How do I write a variable to a file using NASM?
For example, if I execute some mathematical operation - how do I write the result of the operation to write a file?
My file results have remained empty.
My code:
%include "io.inc"
section .bss
result db 2
section .data
filename db "Downloads/output.txt", 0
section .text
global CMAIN
CMAIN:
mov eax,5
add eax,17
mov [result],eax
PRINT_DEC 2,[result]
jmp write
write:
mov EAX, 8
mov EBX, filename
mov ECX, 0700
int 0x80
mov EBX, EAX
mov EAX, 4
mov ECX, [result]
int 0x80
mov EAX, 6
int 0x80
mov eax, 1
int 0x80
jmp exit
exit:
xor eax, eax
ret
You have to implement ito (integer to ascii) subsequently len for this manner. This code tested and works properly in Ubuntu.
section .bss
answer resb 64
section .data
filename db "./output.txt", 0
section .text
global main
main:
mov eax,5
add eax,44412
push eax ; Push the new calculated number onto the stack
call itoa
mov EAX, 8
mov EBX, filename
mov ECX, 0x0700
int 0x80
push answer
call len
mov EBX, EAX
mov EAX, 4
mov ECX, answer
movzx EDX, di ; move with extended zero edi. length of the string
int 0x80
mov EAX, 6
int 0x80
mov eax, 1
int 0x80
jmp exit
exit:
xor eax, eax
ret
itoa:
; Recursive function. This is going to convert the integer to the character.
push ebp ; Setup a new stack frame
mov ebp, esp
push eax ; Save the registers
push ebx
push ecx
push edx
mov eax, [ebp + 8] ; eax is going to contain the integer
mov ebx, dword 10 ; This is our "stop" value as well as our value to divide with
mov ecx, answer ; Put a pointer to answer into ecx
push ebx ; Push ebx on the field for our "stop" value
itoa_loop:
cmp eax, ebx ; Compare eax, and ebx
jl itoa_unroll ; Jump if eax is less than ebx (which is 10)
xor edx, edx ; Clear edx
div ebx ; Divide by ebx (10)
push edx ; Push the remainder onto the stack
jmp itoa_loop ; Jump back to the top of the loop
itoa_unroll:
add al, 0x30 ; Add 0x30 to the bottom part of eax to make it an ASCII char
mov [ecx], byte al ; Move the ASCII char into the memory references by ecx
inc ecx ; Increment ecx
pop eax ; Pop the next variable from the stack
cmp eax, ebx ; Compare if eax is ebx
jne itoa_unroll ; If they are not equal, we jump back to the unroll loop
; else we are done, and we execute the next few commands
mov [ecx], byte 0xa ; Add a newline character to the end of the character array
inc ecx ; Increment ecx
mov [ecx], byte 0 ; Add a null byte to ecx, so that when we pass it to our
; len function it will properly give us a length
pop edx ; Restore registers
pop ecx
pop ebx
pop eax
mov esp, ebp
pop ebp
ret
len:
; Returns the length of a string. The string has to be null terminated. Otherwise this function
; will fail miserably.
; Upon return. edi will contain the length of the string.
push ebp ; Save the previous stack pointer. We restore it on return
mov ebp, esp ; We setup a new stack frame
push eax ; Save registers we are going to use. edi returns the length of the string
push ecx
mov ecx, [ebp + 8] ; Move the pointer to eax; we want an offset of one, to jump over the return address
mov edi, 0 ; Set the counter to 0. We are going to increment this each loop
len_loop: ; Just a quick label to jump to
movzx eax, byte [ecx + edi] ; Move the character to eax.
movsx eax, al ; Move al to eax. al is part of eax.
inc di ; Increase di.
cmp eax, 0 ; Compare eax to 0.
jnz len_loop ; If it is not zero, we jump back to len_loop and repeat.
dec di ; Remove one from the count
pop ecx ; Restore registers
pop eax
mov esp, ebp ; Set esp back to what ebp used to be.
pop ebp ; Restore the stack frame
ret ; Return to caller
On NASM in Arch Linux, how can I append the character zero ('0') to a 32 bit variable? My reason for wanting to do this is so that I can output the number 10 by setting a single-digit input to 1 and appending a zero. I need to figure out how to append the zero.
The desirable situation:
Please enter a number: 9
10
Using this method, I want to be able to do this:
Please enter a number: 9999999
10000000
How can I do this?
Thanks in advance,
RileyH
Well, as Bo says... but I was bored. You seem resistant to doing this the easy way (convert your input to a number, add 1, and convert it back to text) so I tried it using characters. This is what I came up with. It's horrid, but "seems to work".
; enter a number and add 1 - the hard way!
; nasm -f elf32 myprog.asm
; ld -o myprog myprog.o -melf_i386
global _start
; you may have these in an ".inc" file
sys_exit equ 1
sys_read equ 3
sys_write equ 4
stdin equ 0
stdout equ 1
stderr equ 2
LF equ 10
section .data
prompt db "Enter a number - not more than 10 digits - no nondigits.", LF
prompt_size equ $ - prompt
errmsg db "Idiot human! Follow instructions next time!", LF
errmsg_size equ $ - errmsg
section .bss
buffer resb 16
fakecarry resb 1
section .text
_start:
nop
mov eax, sys_write
mov ebx, stdout
mov ecx, prompt
mov edx, prompt_size
int 80h
mov eax, sys_read
mov ebx, stdin
mov ecx, buffer + 1 ; leave a space for an extra digit in front
mov edx, 11
int 80h
cmp byte [buffer + 1 + eax - 1], LF
jz goodinput
; pesky user has tried to overflow us!
; flush the buffer, yell at him, and kick him out!
sub esp, 4 ; temporary "buffer"
flush:
mov eax, sys_read
; ebx still okay
mov ecx, esp ; buffer is on the stack
mov edx, 1
int 80h
cmp byte [ecx], LF
jnz flush
add esp, 4 ; "free" our "buffer"
jmp errexit
goodinput:
lea esi, [buffer + eax - 1] ; end of input characters
mov byte [fakecarry], 1 ; only because we want to add 1
xor edx, edx ; count length as we go
next:
; check for valid decimal digit
mov al, [esi]
cmp al, '0'
jb errexit
cmp al, '9'
ja errexit
add al, [fakecarry] ; from previous digit, or first... to add 1
mov byte [fakecarry], 0 ; reset it for next time
cmp al, '9' ; still good digit?
jna nocarry
; fake a "carry" for next digit
mov byte [fakecarry], 1
mov al, '0'
cmp esi, buffer + 1
jnz nocarry
; if first digit entered, we're done
; save last digit and add one ('1') into the space we left
mov [esi], al
inc edx
dec esi
mov byte [esi], '1'
inc edx
dec esi
jmp done
nocarry:
mov [esi], al
inc edx
dec esi
cmp esi, buffer
jnz next
done:
inc edx
inc edx
mov ecx, esi ; should be either buffer + 1, or buffer
mov ebx, stdout
mov eax, sys_write
int 80h
xor eax, eax ; claim "no error"
exit:
mov ebx, eax
mov eax, sys_exit
int 80h
errexit:
mov edx, errmsg_size
mov ecx, errmsg
mov ebx, stderr
mov eax, sys_write
int 80h
mov ebx, -1
jmp exit
;-----------------------------
Is that what you had in mind?
I have a program below that tries to take input from the user and repeat that same string until the user enters it again. (It's a personal learning project)
However, I am having some severe diffuculty in getting it to perform correctly. In a past thread here, you can see the input, pun intended, that other users have provided on this problem.
%include "system.inc"
section .data
greet: db 'Hello!', 0Ah, 'Please enter a word or character:', 0Ah
greetL: equ $-greet ;length of string
inform: db 'I will now repeat this until you type it back to me.', 0Ah
informL: equ $-inform
finish: db 'Good bye!', 0Ah
finishL: equ $-finish
newline: db 0Ah
newlineL: equ $-newline
section .bss
input: resb 40 ;first input buffer
check: resb 40 ;second input buffer
section .text
global _start
_start:
greeting:
mov eax, 4
mov ebx, 1
mov ecx, greet
mov edx, greetL
sys.write
getword:
mov eax, 3
mov ebx, 0
mov ecx, input
mov edx, 40
sys.read
sub eax, 1 ;remove the newline
push eax ;store length for later
instruct:
mov eax, 4
mov ebx, 1
mov ecx, inform
mov edx, informL
sys.write
pop edx ;pop length into edx
mov ecx, edx ;copy into ecx
push ecx ;store ecx again (needed multiple times)
mov eax, 4
mov ebx, 1
mov ecx, input
sys.write
mov eax, 4 ;print newline
mov ebx, 1
mov ecx, newline
mov edx, newlineL
sys.write
mov eax, 3 ;get the user's word
mov ebx, 0
mov ecx, check
mov edx, 40
sys.read
sub eax, 1
push eax
xor eax, eax
checker:
pop ecx ;length of check
pop ebx ;length of input
mov edx, ebx ;copy
cmp ebx, ecx ;see if input was the same as before
jne loop ;if not the same go to input again
mov ebx, check
mov ecx, input
secondcheck:
mov dl, [ebx]
cmp dl, [ecx]
jne loop
inc ebx
inc ecx
dec eax
jnz secondcheck
jmp done
loop:
pop edx
mov ecx, edx
push ecx
mov eax, 4
mov ebx, 1
mov ecx, check
sys.write ;repeat the word
mov eax, 4
mov ebx, 1
mov ecx, newline
mov edx, newlineL
sys.write
mov eax, 3 ;replace new input with old
mov ebx, 0
mov ecx, check
mov edx, 40
sys.read
jmp checker
done:
mov eax, 1
mov ebx, 0
sys.exit
Example output would yield:
Hello!
Please enter a word or character:
INPUT: Nick
I will now repeat this until you type it back to me.
Nick
INPUT: Nick
N
INPUT: Nick
INPUT: Nick
And that goes on forever until is ^C it to death. Any ideas on the problem?
Thanks.
instruct leaves two items on the stack, which are consumed by checker the first time round the loop. But they are not replaced for the case where you go round the loop again. This is the most fundamental problem in your code (there may be others).
You could find this by running with a debugger and watching the stack pointer esp; but it can be seen just by looking at the code -- if you take everything out except for the stack manipulation and branches, you can clearly see that the checker -> loop -> back to checker path pops three items but only pushes one:
greeting:
...
getword:
...
push eax ;store length for later
instruct:
...
pop edx ;pop length into edx
...
push ecx ;store ecx again (needed multiple times)
...
push eax
checker:
pop ecx ;length of check
pop ebx ;length of input
...
jne loop ;if not the same go to input again
...
secondcheck:
...
jne loop
...
jnz secondcheck
jmp done
loop:
pop edx
...
push ecx
...
jmp checker
done:
...
There are better ways to keep long-lived variables than trying to shuffle them around on the stack like this with push and pop.
Keep them in a data section (the .bss you already have would be suitable) instead of on the stack.
Allocate some space on the stack, and load/store them there directly. e.g. sub esp, 8 to reserve two 32-bit words, then access [esp] and [esp+4]. (The stack should be aligned to a 32-bit boundary, so always reserve a multiple of 4 bytes.) Remember to add esp, 8 when you've finished using it.
(These are essentially the equivalent of what a C compiler would do for global (or static) variables, and local variables, respectively.)
I am working on a program - it should be simple - on a Linux OS using NASM and x86 Intel Assembly Syntax.
The problem I am having is that I cannot create a working loop for my program:
section .data
hello: db 'Loop started.', 0Ah ;string tells the user of start
sLength: equ $-hello ;length of string
notDone: db 'Loop not finished.', 0Ah ;string to tell user of continue
nDLength: equ $-notDone ;length of string
done: db 'The loop has finished', 0Ah ;string tells user of end
dLength: equ $-done ;length of string
section .text
global _start:
_start:
jmp welcome ;jump to label "welcome"
mov ecx, 0 ;number used for loop index
jmp loop ;jump to label "loop"
jmp theend ;jump to the last label
welcome:
mov eax, 4
mov ebx, 1
mov ecx, hello
mov edx, sLength
int 80 ;prints out the string in "hello"
loop:
push ecx ;put ecx on the stack so its value isn't lost
mov eax, 4
mov ebx, 1
mov ecx, notDone
mov edx, nDLength
int 80 ;prints out that the loop isn't finished
pop ecx ;restore value
add ecx, 1 ;add one to ecx's value
cmp ecx, 10
jl loop ;if the value is not ten or more, repeat
theend:
;loop for printing out the "done" string
I am getting the first string printed, one "Not done" and the last string printed; I am missing nine more "Not Done"s! Does anyone have any idea as to why I am losing my value for the ecx register?
Thank you.
_start:
jmp welcome
This means all the code below the JMP is not executed, especially the mov ecx,0 (which should be xor ecx,ecx for a shorter instruction)
Don't start with a jump, start with some code. A JMP is a jump, it's not going back after you've jumped, it just continues the execution.
So after jumping to Welcome:, you go directly to Loop:, thus missing the ecx=0 code.
cmp ecx, 10
jl loop
ECX is not 0, it definitely is greater than 10h, so the loop is not taken.
Try this:
_start:
mov eax, 4
mov ebx, 1
mov ecx, hello
mov edx, sLength
int 80 ;prints out the string in "hello"
xor ecx,ecx ;ecx = 0
loop:
push ecx ;save loop index
mov eax, 4
mov ebx, 1
mov ecx, notDone
mov edx, nDLength
int 80 ;prints out that the loop isn't finished
pop ecx ;get loop index back in ECX
add ecx, 1 ;add one to ecx's value
cmp ecx, 10
jl loop ;if the value is not ten or more, repeat
theend:
You are setting the loop register ecx initial value to the address of "hello", and not 0:
jmp welcome
(mov ecx, 0) ;number used for loop index <- jumped over
...
welcome:
...
mov ecx, hello <- setting
int 80 <- ecx
...
loop:
push ecx ;put ecx on the stack so its value isn't lost