I am trying to make a prime number sieve, and it works very well for me. However, it doesn't write the data to a file. It says that the primes were dumped to a file. Is there some size limit on fs.writeFile? The prime number array can get very large. Can someone help me with this?
Code:
#!/usr/bin/env node
var primes = ["2", "3"];
var num = 3;
var prime;
var fs = require("fs");
console.log("Hundreds: 2");
console.log("Hundreds: 3");
while (true) {
prime = true;
var times = Math.pow(num, 0.5);
for (var i=0;i<times;i++) {
if (num % parseInt(primes[i], 32) == 0) {
prime = false;
break;
}
}
if (prime) {
var place = String(num).length;
switch (true) {
case place <= 3:
console.log("Hundreds: "+num);
break;
case place <= 5 :
console.log("Thousands: "+num);
break;
case 6 :
console.log("Hundred thousands: "+num);
break;
case place <= 8 :
console.log("Millions: "+num);
break;
case 9 :
console.log("Hundred millions: "+num);
break;
case place >= 10 :
console.log("Billions or above: "+num);
break;
}
primes.push(num.toString(32));
prime = false;
}
if ((num - 1) % 5000000 == 0) {
fs.writeFile("Primes.txt", JSON.stringify(primes, null, '\t'), function (err) {
if (err) {
console.log("Primes couldn't be dumped");
throw err;
}
console.log("Primes dumped");
});
}
num += 2;
}
By running your code I came to the conclusion that somehow the primes calculation were disturbing the file write. So I tried using fs.writeFileSync(...) and it worked. The file is actually written pretty fast compared to the time it takes to reach your 5000000 threshold (in the long run, it may start taking a lot of time because you have over 300000 new primes being generated between your file writes and you write all the previous primes as well). I really don't know why the asynchronous method isn't writing it. It may be too busy calculating the primes. You know, nodejs asynchronous calls aren't parallel.
try something like this
...
if ((num - 1) % 5000000 == 0) {
fs.writeFileSync("Primes.txt", JSON.stringify(primes, null, '\t'))
console.log("Primes dumped");
}
...
the link to the api is here: https://nodejs.org/api/fs.html#fs_fs_writefile_file_data_options_callback
Be aware that Primes.txt will be rewritten every time. Think about using fs.appendFileSync(...). This would solve the problem taking too long to write the file after some time the code is running.
I've worked on '.appendFileSync()'. And for that, I had to imitate the 'JSON.stringify()' output for array type. This is my code so far:
var primes = ["2", "3"];
var num = 3;
var prime;
var fs = require("fs");
latestPrimes = "[\n\t2,\n\t3"
while (true) {
prime = true;
var times = Math.pow(num, 0.5);
for (var i=0;i<times;i++) {
if (num % parseInt(primes[i], 32) == 0) {
prime = false;
break;
}
}
if (prime) {
var place = String(num).length;
if (place <= 3)
console.log("Hundreds: "+num);
else if (place <= 5)
console.log("Thousands: "+num);
else if (place === 6)
console.log("Hundred thousands: "+num);
else if (place <= 8)
console.log("Millions: "+num);
else if (place === 9)
console.log("Hundred millions: "+num);
else if (place >= 10)
console.log("Billions or above: "+num);
primes.push(num.toString(32));
latestPrimes += ",\n\t"+num.toString(32)
}
if ((num - 1) % 5000000 == 0) {
console.log('amount of primes:', primes.length)
fs.appendFileSync("Primes.txt", latestPrimes)
console.log("Primes dumped");
latestPrimes = ""
}
num += 2;
}
when you stop the program, you just have add the string "\n]" to the end of the file to close the array.
Write a method to test if a string meets the preconditions to become a palindrome.
Eg:
Input | Output
mmo | True
yakak | True
travel | False
I'm thinking of this approach:
Make a suffix tree for all permutation of T such that T$Reverse(T)#
Check for all permutation for same node
Am I missing anything?
All you need to do is check that there's at most one character with an odd number of occurrences. Here's a Java example:
private static boolean canMakePalindrom(String s) {
Map<Character, Integer> countChars = new HashMap<>();
// Count the occurrences of each character
for (char c : s.toCharArray()) {
Integer count = countChars.get(c);
if (count == null) {
count = Integer.valueOf(1);
} else {
count = count + 1;
}
countChars.put(c, count);
}
boolean hasOdd = false;
for (int count : countChars.values()) {
if (count % 2 == 1) {
if (hasOdd) {
// Found two chars with odd counts - return false;
return false;
} else {
// Found the first char with odd count
hasOdd = true;
}
}
}
// Haven't found more than one char with an odd count
return true;
}
EDIT4 (yes - these are ordered to make sense, but numbered by chronological order):
The above implementation has a built in inefficiency. I don't think the first iteration over the string can be avoided, but there's no real reason to keep a count of all the occurrences - it's enough to just keep track of those with the an odd count. For this usecase, it's enough to keep track of each character we encounter (e.g., with a Set), and remove it when we encounter it again. In the worst case, where all the characters in the string are different, the performance is comparable, but in the common case, where there are several occurrences of each character, this implementation improves both time and memory complexity of the second loop (which is now reduced to a single condition) dramatically:
private static boolean canMakePalindrom(String s) {
Set<Character> oddChars = new HashSet<>();
// Go over the characters
for (char c : s.toCharArray()) {
// Record the encountered character:
if (!oddChars.add(c)) {
// If the char was already encountered, remove it -
// this is an even time we encounter it
oddChars.remove(c);
}
}
// Check the number of characters with odd counts:
return oddChars.size() <= 1;
}
EDIT3 (yes - these are ordered to make sense, but numbered by chronological order):
Java 8 provides a fluent streaming API which could be used to create an implementation similar to the Python one-liners below:
private static boolean canMakePalindrom(String s) {
return s.chars()
.boxed()
.collect(Collectors.groupingBy(Function.identity(),
Collectors.counting()))
.values()
.stream()
.filter(p -> p % 2 == 1)
.count() <= 1;
}
EDIT:
Python built-in functions and comprehension capabilities make this too attractive not to publish this one liner solution. It's probably less efficient than the aforementioned Java one, but is quite elegant:
from collections import Counter
def canMakePalindrom(s):
return len([v for v in Counter(s).values() if v % 2 == 1]) <= 1
EDIT2:
Or, an even cleaner approach as proposed by #DSM in the comments:
from collections import Counter
def canMakePalindrom(s):
return sum(v % 2 == 1 for v in Counter(s).values()) <= 1
Instead of counting how many times each letter occurs, another approach keeps track of whether a letter has occurred an odd or even number of times. If a letter has occurred an even number of times, you don’t need to worry about it, and only need to keep track of the odd occurrences in a set. In Java:
public static boolean canMakePalindrome(String s) {
Set<Character> oddLetters = new HashSet<>();
for ( char c : s.toCharArray() ) {
if ( ! oddLetters.remove(c) ) {
oddLetters.add(c);
}
}
return oddLetters.size() <= 1;
}
Really all you're looking for is if all (or all but one) of the letters are paired off. As long as they are, then they will be able to be turned into a palindrome.
So it would be something like...
bool canBeTurnedIntoAPalindrome(string drome)
{
// If we've found a letter that has no match, the center letter.
bool centerUsed = false;
char center;
char c;
int count = 0;
// TODO: Remove whitespace from the string.
// Check each letter to see if there's an even number of it.
for(int i = 0; i<drome.length(); i++)
{
c = drome[i];
count = 0;
for(int j = 0; j < drome.length(); j++)
if (drome[j] == c)
count++;
// If there was an odd number of those entries
// and the center is already used, then a palindrome
// is impossible, so return false.
if (count % 2 == 1)
{
if (centerUsed == true && center != c)
return false;
else
{
centerused = true;
center = c; // This is so when we encounter it again it
// doesn't count it as another separate center.
}
}
}
// If we made it all the way through that loop without returning false, then
return true;
}
This isn't the most efficient (it's counting letters as many times as it comes across them, even if they've been counted already) but it does work.
If I'm understanding your question correctly, this is how I understand it:
If the input string can be rearranged into a palindrome, output "True", otherwise output "False".
Then you can use these simple rules:
If the length is even, every unique character in the input has to occur a multiple of 2 times.
If the length is odd, every unique character except one has to occur a multiple of 2 times. Only 1 character is allowed to not occur a multiple of 2 times.
So for the 3 given examples:
"mmo", odd length, m occurs twice (multiple of 2), o occurs once (not a multiple of 2), so True.
"yakak", odd length, a occurs twice (multiple of 2), k occurs twice (multiple of 2), y occurs once (not a multiple of 2) , so True.
"travel", more than one character does not occur a multiple of 2, so False.
Additional examples:
"mmorpg", only m occurs a multiple of 2, the rest only once, so False.
"mmom", no characters occur a multiple of 2, more than one character occurs "not a multiple of 2 times", so False.
At this point you should realise that if only 1 character is allowed to occur a non-multiple-of-2 times, then you can disregard the length. A string with an even length will have either 2 or more characters occuring a non-multiple-of-2 times, or none at all.
So the final rule should be this:
If at most 1 unique character occurs a non-multiple-of-2 times in the input, the output is True otherwise the output is False.
def can_permutation_palindrome(s):
counter = {}
for c in s:
counter[c] = counter.get(c, 0) + 1
odd_count = 0
for count in counter.values():
odd_count += count % 2
return odd_count in [0, 1]
def check(string):
bv = 0
for s in string:
bv ^= 1 << ord(s)
return bv == 0 or bv & (bv - 1) == 0
I reached the solution below today (python). I think it's readable, and performance-wise it's really good.
sum(map(lambda x: word.count(x) % 2, set(word))) <= 1
We're basically counting the number of occurrences of each character in the string "word", getting the remainder of the division by 2, summing them all and checking if you have at most 1 of them.
The idea is that you need to have all characters paired, except potentially for one (the middle one).
My idea is, if the number of letters with odd count is one and rest all have even count, a palindrome is possible..Here's my program in Python
string = raw_input()
found = False
char_set = set(string) # Lets find unique letters
d_dict = {}
for c in char_set:
d_dict[c] = string.count(c) # Keep count of each letter
odd_l = [e for e in d_dict.values() if e%2 == 1] # Check how many has odd number of occurrence
if len(odd_l) >1:
pass
else:
found = True
if not found:
print("NO")
else:
print("YES")
Any string can be palindrome only if at most one character occur odd no. of times and all other characters must occur even number of times. The following program can be used to check whether a palindrome can be string or not.
void checkPalindrome(string s)
{
vector<int> vec(256,0); //Vector for all ASCII characters present.
for(int i=0;i<s.length();++i)
{
vec[s[i]-'a']++;
}
int odd_count=0,flag=0;
for(int i=0;i<vec.size();++i)
{
if(vec[i]%2!=0)
odd_count++;
if(odd_count>1)
{
flag=1;
cout<<"Can't be palindrome"<<endl;
break;
}
}
if(flag==0)
cout<<"Yes can be palindrome"<<endl;
}
With O(n) complexity .
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace PallindromePemutation
{
class charcount
{
public char character { get; set; }
public int occurences { get; set; }
}
class Program
{
static void Main(string[] args)
{
List<charcount> list = new List<charcount>();
charcount ch;
int count = 0;
char[] arr = "travel".ToCharArray();
for (int i = 0; i < arr.Length; i++)
{
charcount res = list.Find(x => x.character == arr.ElementAt(i));
if (res == null)
{
ch = new charcount();
ch.character = arr.ElementAt(i);
ch.occurences = 1;
list.Add(ch);
}
else
{
charcount temp= list.Find(x => x.character == arr.ElementAt(i));
temp.occurences++;
}
}
foreach (var item in list)
{
if (!(item.occurences % 2 == 0))
{
count++;
}
}
if (count > 1)
{
Console.WriteLine("false");
}
else
{
Console.WriteLine("true");
}
Console.ReadKey();
}
}
}
If we don't care case sensitivity of characters and spaces within a string, then a sample solution in C# by using Dictionary can be like :
private static bool IsPalindromePermutation(string inputStr)
{
// First, check whether input string is null or whitespace.
// If yes, then return false.
if (string.IsNullOrWhiteSpace(inputStr))
return false;
var inputDict = new Dictionary<char, int>();
// Big/small letter is not important
var lowerInputStr = inputStr.ToLower();
// Fill input dictionary
// If hit a space, then skip it
for (var i = 0; i < lowerInputStr.Length; i++)
{
if (lowerInputStr[i] != ' ')
{
if (inputDict.ContainsKey(lowerInputStr[i]))
inputDict[lowerInputStr[i]] += 1;
else
inputDict.Add(lowerInputStr[i], 1);
}
}
var countOdds = 0;
foreach(var elem in inputDict)
{
if(elem.Value % 2 != 0)
countOdds++;
}
return countOdds <= 1;
}
We can acheive this via collections also
String name = "raa";
List<Character> temp = new ArrayList<>(name.chars()
.mapToObj(e -> (char) e).collect(Collectors.toList()));
for (int i = 0; i < temp.size(); i++) {
for (int j = i + 1; j < temp.size(); j++) {
if (temp.get(i).equals(temp.get(j))) {
temp.remove(j);
temp.remove(i);
i--;
}
}
}
if (temp.size() <= 1) {
System.out.println("Pallindrome");
} else {
System.out.println(temp.size());
System.out.println("Not Pallindrome");
}
}
This is my solution
public static void main(String[] args) {
List<Character> characters = new ArrayList<>();
Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();
for (int i = 0; i < input.length(); i++){
char val = input.charAt(i);
if (characters.contains(val)){
characters.remove(characters.indexOf(val));
} else{
characters.add(val);
}
}
if (characters.size() == 1 || characters.size() == 0){
System.out.print("Yes");
} else{
System.out.print("No");
}
}
That 's my solution. The string could contain several words with spaces, such as
Input: Tact Coa
Output true
Input: Tact Coa vvu
Output: false
public static boolean checkForPalindrome(String str) {
String strTrimmed = str.replaceAll(" ","");
System.out.println(strTrimmed);
char[] str1 = strTrimmed.toCharArray();
for (int i = 0; i < str1.length; i++) {
str1[i] = Character.toLowerCase(str1[i]);
}
Arrays.sort(str1);
String result = new String(str1);
System.out.println(result);
int count = 0;
for (int j = 0; j < str1.length; j += 2) {
if (j != str1.length-1) {
if (str1[j] != str1[j+1]) {
count++;
j++;
}
} else {
count++;
}
}
if (count > 1) return false;
else return true;
}
Question: Can a String become a palindrome?
Method1: count of characters
IN Java :
public class TEST11 {
public static void main(String[] args) {
String a = "Protijayi";
int[] count = new int[256];
Arrays.fill(count, 0);
for (int i = 0; i < a.length(); i++) {
char ch = a.charAt(i);
count[ch]++;
} // for
// counting of odd letters
int odd = 0;
for (int i = 0; i < count.length; i++) {
if ((count[i] & 1) == 1) {
odd++;
}
} // for
if (odd > 1) {
System.out.println("no");
} else {
System.out.println("yes");
}
}
}
IN Python:
def fix (a):
count = [0] * 256
for i in a: count[ord(i)] += 1
# counting of odd characters
odd = 0
for i in range(256):
if((count[i] & 1) == 1): odd += 1
if(odd > 1):print("no")
else:print("yes")
a = "Protijayi"
fix(a)
Method 2 : Use of HashSet
In Java:
public class TEST11 {
public static void main(String[] args) {
String a = "Protijayi";
Set<Character> set = new HashSet<>();
for (char ch : a.toCharArray()) {
if (set.contains(ch)) {
set.remove(ch);
}
set.add(ch);
} // for
if (set.size() <= 1) {
System.out.println("yes can be a palindrome");
} else {
System.out.println("no");
}
}
}
Swift example for this question.
var str = "mmoosl"
extension String {
func count(of needle: Character) -> Int {
return reduce(0) {
$1 == needle ? $0 + 1 : $0
}
}
}
func canBeTurnedIntoAPalinpolyString(_ polyString: String) -> Bool {
var centerUsed = false
var center = Character("a")
for i in polyString {
let count = polyString.count(of: i)
if count == 1 && !centerUsed {
center = i
centerUsed = true
} else {
if count % 2 != 0 {
return false
}
}
}
return true
}
print(canBeTurnedIntoAPalinpolyString(str))
Java
private static boolean isStringPalindromePermutation(String input) {
if(input == null) return false;
if(input.isEmpty()) return false;
int checker = 0;
for (int i = 0; i < input.length(); i++) {
int character = input.charAt(i) - 'a';
int oneShiftedByNumberInCharacter = 1 << character;
int summaryAnd = checker & oneShiftedByNumberInCharacter;
if ( summaryAnd > 0 ) {
int revertToShiftedByChar = ~oneShiftedByNumberInCharacter;
checker = checker & revertToShiftedByChar;
} else {
checker |= oneShiftedByNumberInCharacter;
}
}
if ( input.length() % 2 == 0 ) {
if ( checker == 0) {
return true;
}
else return false;
} else {
int checkerMinusOne = checker-1;
if((checkerMinusOne & checker) == 0){
return true;
}else{
return false;
}
}
}
Why use a suffix tree or any other data structure?
The basic requirement of a palindromic string is the frequency of all characters must be even or only one character can have odd frequency.
Example :-
Input : aabbaa
Output : frequency of a is 4 and b is 2 (both even)
Input : xxzyzxx
Output : frequency of x is 4, z is 2 and y=1 (only 1 odd)
Sample code for better understanding :
bool ispalin(string str) //function to check
{
int freq[26] = {0}; //to store frequency of character here i am
// considering only lower case letters
for (int i = 0; str.length(); i++)
freq[str[i]]++;
int odd = 0;
for (int i = 0; i < 26; i++) //Count odd occurring characters
{
if (freq[i] & 1) //checking if odd
odd++;
if (odd > 1) //if number of odd freq is greater than 1
return false;
}
return true; //else return true
}
python code to check whether a palindrome can be formed from given string or not:
test_str = input('enter any string = ')
count = 0
for item in set(test_str):
if test_str.count(item)%2 != 0:
count+=1
if (count>1):
print(" palindrome cannot be formed")
else:
print(" palindrome can be formed")
Please try this code if any issue please comments
More efficient implementation - Java
boolean palindromeRearranging(String inputString) {
Map<Character, Integer> charsCount = new HashMap<Character, Integer>();
for(char c : inputString.toCharArray()){
charsCount.compute(c, (key, val) -> val == null ? 1 : val + 1);
}
List<Integer> result = new ArrayList<>();
charsCount.forEach((k, v) -> {
if(v % 2 != 0){
result.add(v);
}
});
return (result.size() == 0 || result.size() == 1);
}
Here is my code :
boolean palindromeRearranging(String inputString) {
HashMap<Character,Integer> stCount=new HashMap<>();
for(int i=0;i<inputString.length();i++){
stCount.put(inputString.charAt(i),0);
}
for(int i=0;i<inputString.length();i++){
int c= stCount.get(inputString.charAt(i));
stCount.put(inputString.charAt(i),++c);
}
int c=0;
for (Map.Entry<Character,Integer> entry : stCount.entrySet()){
if(entry.getValue()%2!=0){
c++;
if(c>1){
return false;
}
}
}
return true;
}
JS solution:
function solution(inputString) {
const arr = inputString.split('');
let hasCoupleList = arr.map( (el) => arr.filter( (el1) => el1 == el).length % 2 == 0).filter( (el) => el == false).length;
return (arr.length % 2 == 0)
? hasCoupleList == 0
: hasCoupleList == 1;
}
With JAVA
import java.util.*;
import java.lang.*;
//Classs
class Permutation {
/*
* We need to have an even number of almost all characters,
* so that half can be on one side and half can be on the other side.
* At most one character (the middle character) can have an odd count.
*/
public static boolean hasPalindrome(String str) {
boolean wasOdd = false;
for (Character c: str.toCharArray()) {
int counter = 0;
for (Character cc: str.toCharArray()) {
if (c == cc) {
counter++;
}
}
if (counter % 2 == 1) {
if (wasOdd) {
return false;
}
wasOdd = true;
}
}
return true;
}
public static void main(String args[]) throws Exception {
//Taking string input
//Scanner
Scanner s = new Scanner(System.in);
String str = s.nextLine();
if (Permutation.hasPalindrome(str)) {
System.out.println("YES"); // Writing output to STDOUT
} else {
System.out.println("NO"); // Writing output to STDOUT
}
}
}
Implementation from Checking if a String is a Permutation of a Palindrome
Time complexity is essentially O(n). This means that the function is linear in the length of the input string
public static boolean isPermutationOfPalindrome(String str) {
// Convert the input string to lower case and remove any non-letter characters
str = str.toLowerCase().replaceAll("[^a-z]", "");
// Create an array to count the frequency of each letter
int[] charCounts = new int[26];
for (int i = 0; i < str.length(); i++) {
charCounts[str.charAt(i) - 'a']++;
}
// Check if there is at most one character with an odd frequency
boolean foundOdd = false;
for (int count : charCounts) {
if (count % 2 == 1) {
if (foundOdd) {
return false;
}
foundOdd = true;
}
}
return true;
}
Can someone explain to me how to solve the substring problem iteratively?
The problem: given two strings S=S1S2S3…Sn and T=T1T2T3…Tm, with m is less than or equal to n, determine if T is a substring of S.
Here's a list of string searching algorithms
Depending on your needs, a different algorithm may be a better fit, but Boyer-Moore is a popular choice.
A naive algorithm would be to test at each position 0 < i ≤ n-m of S if Si+1Si+2…Si+m=T1T2…Tm. For n=7 and m=5:
i=0: S1S2S3S4S5S6S7
| | | | |
T1T2T3T4T5
i=1: S1S2S3S4S5S6S7
| | | | |
T1T2T3T4T5
i=2: S1S2S3S4S5S6S7
| | | | |
T1T2T3T4T5
The algorithm in pseudo-code:
// we just need to test if n ≤ m
IF n > m:
// for each offset on that T can start to be substring of S
FOR i FROM 0 TO n-m:
// compare every character of T with the corresponding character in S plus the offset
FOR j FROM 1 TO m:
// if characters are equal
IF S[i+j] == T[j]:
// if we’re at the end of T, T is a substring of S
IF j == m:
RETURN true;
ENDIF;
ELSE:
BREAK;
ENDIF;
ENDFOR;
ENDFOR;
ENDIF;
RETURN false;
Not sure what language you're working in, but here's an example in C#. It's a roughly n2 algorithm, but it will get the job done.
bool IsSubstring (string s, string t)
{
for (int i = 0; i <= (s.Length - t.Length); i++)
{
bool found = true;
for (int j = 0; found && j < t.Length; j++)
{
if (s[i + j] != t[j])
found = false;
}
if (found)
return true;
}
return false;
}
if (T == string.Empty) return true;
for (int i = 0; i <= S.Length - T.Length; i++) {
for (int j = 0; j < T.Length; j++) {
if (S[i + j] == T[j]) {
if (j == (T.Length - 1)) return true;
}
else break;
}
}
return false;
It would go something like this:
m==0? return true
cs=0
ct=0
loop
cs>n-m? break
char at cs+ct in S==char at ct in T?
yes:
ct=ct+1
ct==m? return true
no:
ct=0
cs=cs+1
end loop
return false
This may be redundant with the above list of substring algorithms, but I was always amused by KMP (http://en.wikipedia.org/wiki/Knuth–Morris–Pratt_algorithm)
// runs in best case O(n) where no match, worst case O(n2) where strings match
var s = "hippopotumus"
var t = "tum"
for(var i=0;i<s.length;i++)
if(s[i]==t[0])
for(var ii=i,iii=0; iii<t.length && i<s.length; ii++, iii++){
if(s[ii]!=t[iii]) break
else if (iii==t.length-1) console.log("yay found it at index: "+i)
}
Here is my PHP variation that includes a check to make sure the Needle does not exceed the Haystacks length during the search.
<?php
function substring($haystack,$needle) {
if("" == $needle) { return true; }
echo "Haystack:\n$haystack\n";
echo "Needle:\n$needle\n";
for($i=0,$len=strlen($haystack);$i<$len;$i++){
if($needle[0] == $haystack[$i]) {
$found = true;
for($j=0,$slen=strlen($needle);$j<$slen;$j++) {
if($j >= $len) { return false; }
if($needle[$j] != $haystack[$i+$j]) {
$found = false;
continue;
}
}
if($found) {
echo " . . . . . . SUCCESS!!!! startPos: $i\n";
return true;
}
}
}
echo " . . . . . . FAILURE!\n" ;
return false;
}
assert(substring("haystack","hay"));
assert(!substring("ack","hoy"));
assert(substring("hayhayhay","hayhay"));
assert(substring("mucho22","22"));
assert(!substring("str","string"));
?>
Left in some echo's. Remove if they offend you!
Is a O(n*m) algorithm, where n and m are the size of each string.
In C# it would be something similar to:
public static bool IsSubtring(char[] strBigger, char[] strSmall)
{
int startBigger = 0;
while (startBigger <= strBigger.Length - strSmall.Length)
{
int i = startBigger, j = 0;
while (j < strSmall.Length && strSmall[j] == strBigger[i])
{
i++;
j++;
}
if (j == strSmall.Length)
return true;
startBigger++;
}
return false;
}
I know I'm late to the game but here is my version of it (in C#):
bool isSubString(string subString, string supraString)
{
for (int x = 0; x <= supraString.Length; x++)
{
int counter = 0;
if (subString[0] == supraString[x]) //find initial match
{
for (int y = 0; y <= subString.Length; y++)
{
if (subString[y] == supraString[y+x])
{
counter++;
if (counter == subString.Length)
{
return true;
}
}
}
}
}
return false;
}
Though its pretty old post, I am trying to answer it. Kindly correct me if anything is wrong,
package com.amaze.substring;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class CheckSubstring {
/**
* #param args
* #throws IOException
*/
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Please enter the main string");
String mainStr = br.readLine();
System.out.println("Enter the substring that has to be searched");
String subStr = br.readLine();
char[] mainArr = new char[mainStr.length()];
mainArr = mainStr.toCharArray();
char[] subArr = new char[subStr.length()];
subArr = subStr.toCharArray();
boolean tracing = false;
//System.out.println("Length of substring is "+subArr.length);
int j = 0;
for(int i=0; i<mainStr.length();i++){
if(!tracing){
if(mainArr[i] == subArr[j]){
tracing = true;
j++;
}
} else {
if (mainArr[i] == subArr[j]){
//System.out.println(mainArr[i]);
//System.out.println(subArr[j]);
j++;
System.out.println("Value of j is "+j);
if((j == subArr.length)){
System.out.println("SubString found");
return;
}
} else {
j=0;
tracing = false;
}
}
}
System.out.println("Substring not found");
}
}