VBA Byte Array to String - string

Apologies if this question has been previously answered, I was unable to find an explanation. I've created a script in VBScript to encrypt an user input and match to an already encrypted password. I ran into some issues along the way and managed to deduce to the following.
I have a byte array (1 to 2) as values (1, 16). I am then defining a string with the value of the array as per below:
Dim bytArr(1 To 2) As Byte
Dim output As String
bytArr(1) = 16
bytArr(2) = 1
output = bytArr
Debug.Print output
The output I get is Ð (Eth) ASCII Value 208. Could someone please explain how the byte array is converted to this character?

In VBA, Byte Arrays are special because, unlike arrays of other datatypes, a string can be directly assigned to a byte array. In VBA, Strings are UNICODE strings, so when one assigns a string to a byte array then it stores two digits for each character;
although the glyphs seem to be the same, see charmap:
Ð is Unicode Character 'LATIN CAPITAL LETTER ETH' (U+00D0) shown in charmap DOS Western (Central) Europe character set (0xD1, i.e. decimal 209);
Đ is Unicode Character 'LATIN CAPITAL LETTER D WITH STROKE' (U+0110) shown in charmap Windows Western (Central Europe) character set (0xD0, i.e. decimal 208).
Get above statements together keeping in mind endianness (byte order) of the computer architecture: Intel x86 processors use little-endian, so byte array (0x10, 0x01) is the same as unicode string U+0110.
Charaters are amalgamated via flagrant mojibake case. For proof, please use Asc and AscW Functions as follows: Debug.Print output, Asc(output), AscW(output) with different console code pages, e.g. under chcp 852 and chcp 1250.

Related

can not decoed using utf-8 after encoding with utf-8

In a situation I had to store data as utf-8 and now when I want to fetch and decode('utf-8') data it's just simply does not work. Consider line below as an example:
\x0d\x0a\xd8\xb3\xd8\xa7\xd9\x82\xdb\x8c\xe2\x80\x8c\xd9\x86\xd8\xa7\xd9\x85\xd9\x87
You can simply copy the line below to convert the string above to the human readable format:
b"\x0d\x0a\xd8\xb3\xd8\xa7\xd9\x82\xdb\x8c\xe2\x80\x8c\xd9\x86\xd8\xa7\xd9\x85\xd9\x87".decode("utf-8")
However could not find a way to convert the string to bytestring without corrupting the string. I tried following methods but all of them failed:
.decode("utf-8")
.decode()
.bytes()
Up until this point I could not find solution in OS or other places. Appreciate any help.
x0d\x0a\xd8\xb3\xd8\xa7\xd9\x82\xdb\x8c\xe2\x80\x8c\xd9\x86\xd8\xa7\xd9\x85\xd9\x87
b'x0d\x0a\xd8\xb3\xd8\xa7\xd9\x82\xdb\x8c\xe2\x80\x8c\xd9\x86\xd8\xa7\xd9\x85\xd9\x87'
The above lines (both given in the question) are particular instances of String and Bytes literals (respectively):
\xhh Character with hex value hh (2, 3)
2 Unlike in Standard C, exactly two hex digits are
required.
3 In a bytes literal, hexadecimal and octal escapes denote
the byte with the given value. In a string literal, these escapes
denote a Unicode character with the given value.
Let's check the string defined in such a way (inside Python prompt):
>>> xstr = "\x0d\x0a\xd8\xb3\xd8\xa7\xd9\x82\xdb\x8c\xe2\x80\x8c\xd9\x86\xd8\xa7\xd9\x85\xd9\x87"
>>> xstr
'\r\nساÙ\x82Û\x8câ\x80\x8cÙ\x86اÙ\x85Ù\x87'
>>> print( xstr)
ساÙÛâÙاÙ
Ù
>>>
Apparently, the print( xstr) output does not resemble a word in any known language however all its characters belong (by definition) to Unicode range r'[\u0000-\u00ff]' i.e. the first 256 of characters in Unicode, and voila - it's iso-8859-1 aka 'latin1'.
We need to get an encoded version of the xstr string as a bytes object, e.g. using str.encode method or built-in bytes() function. Then
print( bytes(xstr,'latin1').decode()); print(xstr.encode("latin1").decode())
ساقی‌نامه
ساقی‌نامه

How to convert double byte character/string to single byte and vice versa?

I am working on the Japanese text and i have 2 requirement.
Convert all charters in a string into double byte characters. This string can contain single or double or both character but the resulting string should be double byte only.
eg: 東京都中央区晴海1丁目8番11号
expected output: 東京都中央区晴海<1>丁目<8>番<11>号. all <> should contain double byte characters
Convert all charters into single byte characters. String is similar to requirement 1 but resulting string should contain only single byte characters.
eg: ADORES,Inc.
expected output: ADORES, INC.
I am reading this data from a csv file which contain nearly 300 columns and only 3 columns need these operations and rest should remain same.
I've got below code from online but it throws error. raw_comp_name contain the data from csv.
raw_comp_name.encode(encoding='utf-8').decode('ascii')
Information
Japanese characters has a standards below. Double-Byte Characters are twice as wide as normal alphabetic characters.
Double-Byte Character (Zenkaku, 全角)
Single-Byte Character (Hankaku, 半角)
You can get more details from this link.
Answer
You can use this jaconv | pip module. It has a both Single-Byte to Double-Byte and Double-Byte to Single-Byte functions. See more details from module documentation link
Attached example code below:
import jaconv
hankaku_text = '東京都中央区晴海1丁目8番11号'
converted_zenkaku = jaconv.hankaku2zenkaku(hankaku_text)
print(converted_zenkaku)
zenkaku_text = "ADORES,Inc."
converted_hankaku = jaconv.zenkaku2hankaku(zenkaku_text)
print(converted_hankaku)
output:
東京都中央区晴海1丁目8番11号
ADORES, Inc.

String Index Error (Julia)

I'm a Julia newbie. When I was testing out the language, I got this error.
First of all, I'm defining String b to "he§y".
Julia seems behaving strangely when I have "special" characters in a String...
When I'm trying to get the third character of b (it's supposed to be '§'), everything is OK
However when I'm trying to get the fourth character of b (it's supposed to be 'y'), a "StringIndexError" is thrown.
I don't believe the compiler could throw you the error. Do you mean a runtime error?
I know nothing about Julian language but the symptoms seems to be related to indexing of string is not based on code point, but to some encoding.
The document from Julia lang seems supporting my hypothesis:
https://docs.julialang.org/en/stable/manual/strings/
The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full range of Unicode characters via the UTF-8 encoding. (A transcode function is provided to convert to/from other Unicode encodings.)
...
Conceptually, a string is a partial function from indices to characters: for some index values, no character value is returned, and instead an exception is thrown. This allows for efficient indexing into strings by the byte index of an encoded representation rather than by a character index, which cannot be implemented both efficiently and simply for variable-width encodings of Unicode strings.
Edit: Quoted from Julia document, which is an example demonstrating exact "problem" you are facing.
julia> s = "\u2200 x \u2203 y"
"∀ x ∃ y"
Whether these Unicode characters are displayed as escapes or shown as
special characters depends on your terminal's locale settings and its
support for Unicode. String literals are encoded using the UTF-8
encoding. UTF-8 is a variable-width encoding, meaning that not all
characters are encoded in the same number of bytes. In UTF-8, ASCII
characters – i.e. those with code points less than 0x80 (128) – are
encoded as they are in ASCII, using a single byte, while code points
0x80 and above are encoded using multiple bytes – up to four per
character. This means that not every byte index into a UTF-8 string is
necessarily a valid index for a character. If you index into a string
at such an invalid byte index, an error is thrown:
julia> s[1]
'∀': Unicode U+2200 (category Sm: Symbol, math)
julia> s[2]
ERROR: StringIndexError("∀ x ∃ y", 2)
[...]
julia> s[3]
ERROR: StringIndexError("∀ x ∃ y", 3)
Stacktrace:
[...]
julia> s[4]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

What determines the position of a character when looping through UTF-8 strings?

I am reading the section on for statements in the Effective Go documentation and came across this example:
for pos, char := range "日本\x80語" {
fmt.Printf("Character %#U, at position: %d\n", char, pos)
}
The output is:
Character U+65E5 '日', at position: 0
Character U+672C '本', at position: 3
Character U+FFFD '�', at position: 6
Character U+8A9E '語', at position: 7
What I don't understand is why the positions are 0, 3, 6, and 7. This tells me the first and second character is 3 bytes long and the 'replacement rune' (U+FFFD) is 1 byte long, which I accept and understand. However, I thought rune was of int32 type and therefore would be 4 bytes each, not three.
Why are the positions in a range different to the total amount of memory each value should be consuming?
string values in Go are stored as read only byte slices ([]byte), where the bytes are the UTF-8 encoded bytes of the (runes of the) string. UTF-8 is a variable-length encoding, different Unicode code points may be encoded using different number of bytes. For example values in the range 0..127 are encoded as a single byte (whose value is the unicode codepoint itself), but values greater than 127 use more than 1 byte. The unicode/utf8 package contains UTF-8 related utility functions and constants, for example utf8.UTFMax reports the maximum number of bytes a valid Unicode codepoint may "occupy" in UTF-8 encoding (which is 4).
One thing to note here: not all possible byte sequences are valid UTF-8 sequences. A string may be any byte sequence, even those that are invalid UTF-8 sequences. For example the string value "\xff" represents an invalid UTF-8 byte sequence, for details, see How do I represent an Optional String in Go?
The for range construct –when applied on a string value– iterates over the runes of the string:
For a string value, the "range" clause iterates over the Unicode code points in the string starting at byte index 0. On successive iterations, the index value will be the index of the first byte of successive UTF-8-encoded code points in the string, and the second value, of type rune, will be the value of the corresponding code point. If the iteration encounters an invalid UTF-8 sequence, the second value will be 0xFFFD, the Unicode replacement character, and the next iteration will advance a single byte in the string.
The for range construct may produce 1 or 2 iteration values. When using 2, like in your example:
for pos, char := range "日本\x80語" {
fmt.Printf("Character %#U, at position: %d\n", char, pos)
}
For each iteration, pos will be byte index of the rune / character, and char will be the rune of the string. As you can see in the quote above, if the string is an invalid UTF-8 byte sequence, when an invalid UTF-8 sequence is encountered, char will be 0xFFFD (the Unicode replacement character), and the for range construct (the iteration) will advance a singe byte only.
To sum it up: The position is always the byte index of the rune of the current iteration (or more specifically: the byte index of the first byte of the UTF-8 encoded sequence of the rune of the current iteration), but if invalid UTF-8 sequence is encountered, the position (index) will only be incremented by 1 in the next iteration.
A must-read blog post if you want to know more about the topic:
The Go Blog: Strings, bytes, runes and characters in Go
rune is code point. Code point is just integer. You can even use int64 to store it if you want to. (But Unicode only has 1,114,112 code points so int32 should be the right choice. No wonder rune is alias of int32 in Golang.)
Different encoding schemes encode code points in different ways. E.g. CJK character is usually encoded to 3 bytes in UTF-8, and to 2 bytes in UTF-16.
String literal in Golang is UTF-8.

Perl's default string encoding and representation

In the following:
my $string = "Can you \x{FB01}nd my r\x{E9}sum\x{E9}?\n";
The x{FB01} and x{E9} are code points. And code points are encoded via an encoding scheme to a series of octets.
So the character è which has the codepoint \x{FB01} is part of the string of $string. But how does this work? Are all the characters in this sentence (including the ASCII ones) encoded via UTF-8?
If yes why do I get the following behavior?
my $str = "Some arbitrary string\n";
if(Encode::is_utf8($str)) {
print "YES str IS UTF8!\n";
}
else {
print "NO str IT IS NOT UTF8\n";
}
This prints "NO str IT IS NOT UTF8\n"
Additionally Encode::is_utf8($string) returns true.
In what way are $string and $str different and one is considered UTF-8 and the other not?
And in any case what is the encoding of $str? ASCII? Is this the default for Perl?
In C, a string is a collection of octets, but Perl has two string storage formats:
String of 8-bit values.
String of 72-bit values. (In practice, limited to 32-bit or 64-bit.)
As such, you don't need to encode code points to store them in a string.
my $s = "\x{2660}\x{2661}";
say length $s; # 2
say sprintf '%X', ord substr($s, 0, 1); # 2660
say sprintf '%X', ord substr($s, 1, 1); # 2661
(Internally, an extension of UTF-8 called "utf8" is used to store the strings of 72-bit chars. That's not something you should ever have to know except to realize the performance implications, but there are bugs that expose this fact.)
Encode's is_utf8 reports which type of string a scalar contains. It's a function that serves absolutely no use except to debug the bugs I previously mentioned.
An 8-bit string can store the value of "abc" (or the string in the OP's $str), so Perl used the more efficient 8-bit (UTF8=0) string format.
An 8-bit string can't store the value of "\x{2660}\x{2661}" (or the string in the OP's $string), so Perl used the 72-bit (UTF8=1) string format.
Zero is zero whether it's stored in a floating point number, a signed integer or an unsigned integer. Similarly, the storage format of strings conveys no information about the value of the string.
You can store code points in an 8-bit string (if they're small enough) just as easily as a 72-bit string.
You can store bytes in a 72-bit string just as easily as an 8-bit string.
In fact, Perl will switch between the two formats at will. For example, if you concatenate $string with $str, you'll get a string in the 72-bit format.
You can alter the storage format of a string with the builtins utf8::downgrade and utf8::upgrade, should you ever need to work around a bug.
utf8::downgrade($s); # Switch to strings of 8-bit values (UTF8=0).
utf8::upgrade($s); # Switch to strings of 72-bit values (UTF8=1).
You can see the effect using Devel::Peek.
>perl -MDevel::Peek -e"$s=chr(0x80); utf8::downgrade($s); Dump($s);"
SV = PV(0x7b8a74) at 0x4a84c4
REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x7bab9c "\200"\0
CUR = 1
LEN = 12
>perl -MDevel::Peek -e"$s=chr(0x80); utf8::upgrade($s); Dump($s);"
SV = PV(0x558a6c) at 0x1cc843c
REFCNT = 1
FLAGS = (POK,pPOK,UTF8)
PV = 0x55ab94 "\302\200"\0 [UTF8 "\x{80}"]
CUR = 2
LEN = 12
The \x{FB01} and \x{E9} are code points.
Not quiet, the numeric values inside the braces are codepoints. The whole \x expression is just a notation for a character. There are several notations for characters, most of them starting with a backslash, but the common one is the simple string literal. You might as well write:
use utf8;
my $string = "Can you find my résumé?\n";
# ↑ ↑ ↑
And code points are encoded via an encoding scheme to a series of octets.
True, but so far your string is a string of characters, not a buffer of octets.
But how does this work?
Strings consist of characters. That's just Perl's model. You as a programmer are supposed to deal with it at this level.
Of course, the computer can't, and the internal data structure must have some form of internal encoding. Far too much confusion ensues because "Perl can't keep a secret", the details leak out occasionally.
Are all the characters in this sentence (including the ASCII ones) encoded via UTF-8?
No, the internal encoding is lax UTF8 (no dash). It does not have some of the restrictions that UTF-8 (a.k.a. UTF-8-strict) has.
UTF-8 goes up to 0x10_ffff, UTF8 goes up to 0xffff_ffff_ffff_ffff on my 64-bit system. Codepoints greater than 0xffff_ffff will emit a non-portability warning, though.
In UTF-8 certain codepoints are non-characters or illegal characters. In UTF8, anything goes.
Encode::is_utf8
… is an internals function, and is clearly marked as such. You as a programmer are not supposed to peek. But since you want to peek, no one can stop you. Devel::Peek::Dump is a better tool for getting at the internals.
Read http://p3rl.org/UNI for an introduction to the topic of encoding in Perl.
is_utf8 is a badly-named function that doesn't mean what you think it means or have anything to do with that. The answer to your question is that $string doesn't have an encoding, because it's not encoded. When you call Encode::encode with some encoding, the result of that will be a string that is encoded, and has a known encoding

Resources