Call one Rcpp function inside another passing through DataFrame - rcpp

I've been converting some R code to Rcpp functions recently. I'm simulating people parking their cars in parking lots. I have a function which picks which lot a person will park in based on what gate they enter through and the fullness of the parking lots.
#include <Rcpp.h>
#include <numeric>
#include <chrono>
// [[Rcpp::plugins(cpp11)]]
using namespace Rcpp;
// [[Rcpp::export]]
std::string pickLotcpp(std::string gate,DataFrame dist,DataFrame curr,NumericVector maxDist = 0.005) {
std::vector<std::string> gates = Rcpp::as<std::vector<std::string> >(dist["inGate"]);
std::vector<std::string> lots = Rcpp::as<std::vector<std::string> >(dist["lot"]);
NumericVector d = dist["dist"];
std::vector<std::string> currLots = Rcpp::as<std::vector<std::string> >(curr["Lot"]);
NumericVector cap = curr["Cap"];
NumericVector util = curr["Util"];
NumericVector percFree = (cap - util)/cap;
std::vector<std::string> relLot;
NumericVector relD;
int n = gates.size();
for(int i = 0; i < n; i++){
if(gates[i] == gate){
if(d[i] <= maxDist[0]){
relLot.push_back(lots[i]);
relD.push_back(pow(d[i],-2));
}
}
}
n = relLot.size();
int n2 = currLots.size();
NumericVector relPerc;
for(int i = 0; i < n; i++){
for(int j = 0; j < n2; j++){
if(relLot[i] == currLots[j]){
relPerc.push_back(percFree[j]);
}
}
}
relD = relD*relPerc;
NumericVector csV(relD.size());
std::partial_sum(relD.begin(), relD.end(), csV.begin());
NumericVector::iterator mv;
mv = std::max_element(csV.begin(),csV.end());
double maxV = *mv;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::mt19937 gen(seed);
std::uniform_real_distribution<> dis(0, maxV);
double rv = dis(gen);
int done = 0;
int i = 0;
std::string selGate;
while(done < 1){
if(csV[i] >= rv){
selGate = relLot[i];
done = 1;
}
i++;
}
return selGate;
}
which works great in R:
fakeDist = structure(list(inGate = c("A", "A", "B", "B"), lot = c("Y", "Z", "Y", "Z"), dist = c(0.001, 0.003, 0.003, 0.001)), .Names = c("inGate", "lot", "dist"), row.names = c(NA, 4L), class = c("tbl_df", "tbl", "data.frame"))
fakeStatus = structure(list(Lot = c("Y", "Z"), Cap = c(100, 100), Util = c(0, 0)), .Names = c("Lot", "Cap", "Util"), row.names = c(NA, 2L), class = c("tbl_df", "tbl", "data.frame"))
pickLotcpp("A",fakeDist,fakeStatus)
#> [1] "Y"
Now I'm trying to write the function which will loop through all the gate activity and park people sequentially. So I have this Rcpp function:
// [[Rcpp::export]]
List test(DataFrame records, DataFrame currentLoc, DataFrame dist,
DataFrame currentStatus, NumericVector times){
List out(times.size());
NumericVector recID = records["ID"];
NumericVector recTime = records["Time"];
NumericVector recDir = records["Dir"];
std::vector<std::string> Gate = Rcpp::as<std::vector<std::string> >(records["Gate"]);
NumericVector currState = currentLoc["State"];
std::vector<std::string> currLot = Rcpp::as<std::vector<std::string> >(currentLoc["Lot"]);
out[0] = pickLotcpp(Gate[0],dist,currentStatus);
return out;
}
This is in the same file, under pickLotcpp. It compiles fine, but when called causes R to crash.
fakeData = structure(list(ID = c(1, 2, 3), Time = c(1, 2, 3), Dir = c(1, 1, 1), Gate = c("A", "A", "B")), .Names = c("ID", "Time", "Dir", "Gate"), row.names = c(NA, 3L), class = c("tbl_df", "tbl", "data.frame"))
fakeLoc = structure(list(ID = c(1, 2, 3), State = c(0, 0, 0), Lot = c("", "", "")), .Names = c("ID", "State", "Lot"), row.names = c(NA, 3L), class = c("tbl_df", "tbl", "data.frame"))
a = test(fakeData, fakeLoc, fakeDist, fakeStatus, 10)
I've written other Rcpp code where functions call functions and they work fine. The only thing I can think of is that I'm passing a DataFrame that was an input directly to the other function but I can't find anything that says I can't. I'm not an expert C++ programmer - I just started hacking in it a couple weeks ago and this has me stumped.
How can I call pickLotcpp from test passing along the needed distance and status data frames?

It seems not related to Rcpp.
Can you double check the line
selGate = relLot[i];
relLot might be empty.

Related

Multithreaded Nagel–Schreckenberg model (traffic simulation) with OpenMP

I'm trying to write a multithreaded Nagel–Schreckenberg model simulation in c language and have some problems when a thread accesses the data which wasn't calculated yet.
Here is a working code which only parallelizes velocity calculation per line:
#define L 3000 // number of cells in row
#define num_iters 3000 // number of iterations
#define density 0.48 // how many positives
#define vmax 2
#define p 0.2
for (int i = 0; i < num_iters - 1; i++)
{
int temp[L] = {0};
#pragma omp parallel for
for (int x = 0; x < L; x++)
{
if (iterations[i][x] > -1)
{
int vi = iterations[i][x]; // velocity of previews iteration
int d = 1; // index of the next vehicle
while (iterations[i][(x + d) % L] < 0)
d++;
int vtemp = min(min(vi + 1, d - 1), vmax); // increase speed, but avoid hitting the next car
int v = r2() < p ? max(vtemp - 1, 0) : vtemp; // stop the vehicle with probability p
temp[x] = v;
}
}
for (int x = 0; x < L; x++) // write the velocities to the next line
{
if (iterations[i][x] > -1)
{
int v = temp[x];
iterations[i + 1][(x + v) % L] = v;
}
}
}
This works fine, but it's not fast enough. I'm trying to use convolution to increase the performance, but it can't read neighbor thread's data half of the time because it wasn't calculated yet. Here is the code I used:
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
#define L 4000 // number of cells in row
#define num_iters 4000 // number of iterations
#define density 0.48 // how many positives
#define vmax 2
#define p 0.2
#define BLOCKS_Y 4
#define BLOCKS_X 4
#define BLOCKSIZEY (L / BLOCKS_Y)
#define BLOCKSIZEX (L / BLOCKS_X)
time_t t;
#ifndef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef max
#define max(a, b) (((a) > (b)) ? (a) : (b))
#endif
void shuffle(int *array, size_t n)
{
if (n > 1)
{
size_t i;
for (i = 0; i < n - 1; i++)
{
size_t j = i + rand() / (RAND_MAX / (n - i) + 1);
int t = array[j];
array[j] = array[i];
array[i] = t;
}
}
}
double r2()
{
return (double)rand() / (double)RAND_MAX;
}
void writeImage(int *iterations[], char filename[])
{
int h = L;
int w = num_iters;
FILE *f;
unsigned char *img = NULL;
int filesize = 54 + 3 * w * h;
img = (unsigned char *)malloc(3 * w * h);
memset(img, 0, 3 * w * h);
for (int i = 0; i < w; i++)
{
for (int j = 0; j < h; j++)
{
int x = i;
int y = (h - 1) - j;
int color = iterations[i][j] == 0 ? 0 : 255;
img[(x + y * w) * 3 + 2] = (unsigned char)(color);
img[(x + y * w) * 3 + 1] = (unsigned char)(color);
img[(x + y * w) * 3 + 0] = (unsigned char)(color);
}
}
unsigned char bmpfileheader[14] = {'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0};
unsigned char bmpinfoheader[40] = {40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0};
unsigned char bmppad[3] = {0, 0, 0};
bmpfileheader[2] = (unsigned char)(filesize);
bmpfileheader[3] = (unsigned char)(filesize >> 8);
bmpfileheader[4] = (unsigned char)(filesize >> 16);
bmpfileheader[5] = (unsigned char)(filesize >> 24);
bmpinfoheader[4] = (unsigned char)(w);
bmpinfoheader[5] = (unsigned char)(w >> 8);
bmpinfoheader[6] = (unsigned char)(w >> 16);
bmpinfoheader[7] = (unsigned char)(w >> 24);
bmpinfoheader[8] = (unsigned char)(h);
bmpinfoheader[9] = (unsigned char)(h >> 8);
bmpinfoheader[10] = (unsigned char)(h >> 16);
bmpinfoheader[11] = (unsigned char)(h >> 24);
f = fopen(filename, "wb");
fwrite(bmpfileheader, 1, 14, f);
fwrite(bmpinfoheader, 1, 40, f);
for (int i = 0; i < h; i++)
{
fwrite(img + (w * (h - i - 1) * 3), 3, w, f);
fwrite(bmppad, 1, (4 - (w * 3) % 4) % 4, f);
}
free(img);
fclose(f);
}
void simulation()
{
printf("L=%d, num_iters=%d\n", L, num_iters);
int z = 0;
z++;
int current_index = 0;
int success_moves = 0;
const int cars_num = (int)(density * L);
int **iterations = (int **)malloc(num_iters * sizeof(int *));
for (int i = 0; i < num_iters; i++)
iterations[i] = (int *)malloc(L * sizeof(int));
for (int i = 0; i < L; i++)
{
iterations[0][i] = i <= cars_num ? 0 : -1;
}
shuffle(iterations[0], L);
for (int i = 0; i < num_iters - 1; i++)
for (int x = 0; x < L; x++)
iterations[i + 1][x] = -1;
double *randoms = (double *)malloc(L * num_iters * sizeof(double));
for (int i = 0; i < L * num_iters; i++) {
randoms[i] = r2();
}
#pragma omp parallel for collapse(2)
for (int blocky = 0; blocky < BLOCKS_Y; blocky++)
{
for (int blockx = 0; blockx < BLOCKS_X; blockx++)
{
int ystart = blocky * BLOCKSIZEY;
int yend = ystart + BLOCKSIZEY;
int xstart = blockx * BLOCKSIZEX;
int xend = xstart + BLOCKSIZEX;
for (int y = ystart; y < yend; y++)
{
for (int x = xstart; x < xend; x++)
{
if (iterations[y][x] > -1)
{
int vi = iterations[y][x];
int d = 1;
int start = (x + d) % L;
int i;
for (i = start; i < L && iterations[y][i] < 0; ++i);
d += i - start;
if (i == L)
{
for (i = 0; i < start && iterations[y][i] < 0; ++i);
d += i;
}
int vtemp = min(min(vi + 1, d - 1), vmax);
int v = randoms[x * y] < p ? max(vtemp - 1, 0) : vtemp;
iterations[y + 1][(x + v) % L] = v;
}
}
}
}
}
if (L <= 4000)
writeImage(iterations, "img.bmp");
free(iterations);
}
void main() {
srand((unsigned)time(&t));
simulation();
}
As you can see, as the second block gets calculated the first one didn't probably calculate yet which produces that empty space.
I think it's possible to solve this with the convolution, but I'm just doing something wrong and I'm not sure what. If you could give any advice on how to fix this problem, I would really appreciate it.
There is a race condition in the second code because iterations can be read by a thread and written by another. More specifically, iterations[y + 1][(x + v) % L] = v set a value that another thread should read when checking iterations[y][x] or iterations[y][(x + d) % L] when two threads are working on consecutive y values (of two consecutive blocky values).
Moreover, the r2 function have to be thread-safe. It appears to be a random number generator (RNG), but such random function is generally implemented using global variables that are often not thread-safe. One simple and efficient solution is to use thread_local variables instead. An alternative solution is to explicitly pass in parameter a mutable state to the random function. The latter is a good practice when you design parallel applications since it makes visible the mutation of an internal state and it provides way to better control the determinism of the RNG.
Besides this, please note that modulus are generally expensive, especially if L is not a compile-time constant. You can remove some of them by pre-computing the remainder before a loop or splitting a loop so to perform checks only near the boundaries. Here is an (untested) example for the while:
int start = (x + d) % L;
int i;
for(i=start ; i < L && iterations[y][i] < 0 ; ++i);
d += i - start;
if(i == L) {
for(i=0 ; i < start && iterations[y][i] < 0 ; ++i);
d += i;
}
Finally, please note that the blocks should be divisible by 4. Otherwise, the current code is not valid (a min/max clamping is likely needed).

Calculating number of minimum swaps to sort array (selection sort is too slow) [duplicate]

I'm working on sorting an integer sequence with no identical numbers (without loss of generality, let's assume the sequence is a permutation of 1,2,...,n) into its natural increasing order (i.e. 1,2,...,n). I was thinking about directly swapping the elements (regardless of the positions of elements; in other words, a swap is valid for any two elements) with minimal number of swaps (the following may be a feasible solution):
Swap two elements with the constraint that either one or both of them should be swapped into the correct position(s). Until every element is put in its correct position.
But I don't know how to mathematically prove if the above solution is optimal. Anyone can help?
I was able to prove this with graph-theory. Might want to add that tag in :)
Create a graph with n vertices. Create an edge from node n_i to n_j if the element in position i should be in position j in the correct ordering. You will now have a graph consisting of several non-intersecting cycles. I argue that the minimum number of swaps needed to order the graph correctly is
M = sum (c in cycles) size(c) - 1
Take a second to convince yourself of that...if two items are in a cycle, one swap can just take care of them. If three items are in a cycle, you can swap a pair to put one in the right spot, and a two-cycle remains, etc. If n items are in a cycle, you need n-1 swaps. (This is always true even if you don't swap with immediate neighbors.)
Given that, you may now be able to see why your algorithm is optimal. If you do a swap and at least one item is in the right position, then it will always reduce the value of M by 1. For any cycle of length n, consider swapping an element into the correct spot, occupied by its neighbor. You now have a correctly ordered element, and a cycle of length n-1.
Since M is the minimum number of swaps, and your algorithm always reduces M by 1 for each swap, it must be optimal.
All the cycle counting is very difficult to keep in your head. There is a way that is much simpler to memorize.
First, let's go through a sample case manually.
Sequence: [7, 1, 3, 2, 4, 5, 6]
Enumerate it: [(0, 7), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5), (6, 6)]
Sort the enumeration by value: [(1, 1), (3, 2), (2, 3), (4, 4), (5, 5), (6, 6), (0, 7)]
Start from the beginning. While the index is different from the enumerated index keep on swapping the elements defined by index and enumerated index. Remember: swap(0,2);swap(0,3) is the same as swap(2,3);swap(0,2)
swap(0, 1) => [(3, 2), (1, 1), (2, 3), (4, 4), (5, 5), (6, 6), (0, 7)]
swap(0, 3) => [(4, 4), (1, 1), (2, 3), (3, 2), (5, 5), (6, 6), (0, 7)]
swap(0, 4) => [(5, 5), (1, 1), (2, 3), (3, 2), (4, 4), (6, 6), (0, 7)]
swap(0, 5) => [(6, 6), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5), (0, 7)]
swap(0, 6) => [(0, 7), (1, 1), (2, 3), (3, 2), (4, 4), (5, 5), (6, 6)]
I.e. semantically you sort the elements and then figure out how to put them to the initial state via swapping through the leftmost item that is out of place.
Python algorithm is as simple as this:
def swap(arr, i, j):
arr[i], arr[j] = arr[j], arr[i]
def minimum_swaps(arr):
annotated = [*enumerate(arr)]
annotated.sort(key = lambda it: it[1])
count = 0
i = 0
while i < len(arr):
if annotated[i][0] == i:
i += 1
continue
swap(annotated, i, annotated[i][0])
count += 1
return count
Thus, you don't need to memorize visited nodes or compute some cycle length.
For your reference, here is an algorithm that I wrote, to generate the minimum number of swaps needed to sort the array. It finds the cycles as described by #Andrew Mao.
/**
* Finds the minimum number of swaps to sort given array in increasing order.
* #param ar array of <strong>non-negative distinct</strong> integers.
* input array will be overwritten during the call!
* #return min no of swaps
*/
public int findMinSwapsToSort(int[] ar) {
int n = ar.length;
Map<Integer, Integer> m = new HashMap<>();
for (int i = 0; i < n; i++) {
m.put(ar[i], i);
}
Arrays.sort(ar);
for (int i = 0; i < n; i++) {
ar[i] = m.get(ar[i]);
}
m = null;
int swaps = 0;
for (int i = 0; i < n; i++) {
int val = ar[i];
if (val < 0) continue;
while (val != i) {
int new_val = ar[val];
ar[val] = -1;
val = new_val;
swaps++;
}
ar[i] = -1;
}
return swaps;
}
We do not need to swap the actual elements, just find how many elements are not in the right index (Cycle).
The min swaps will be Cycle - 1;
Here is the code...
static int minimumSwaps(int[] arr) {
int swap=0;
boolean visited[]=new boolean[arr.length];
for(int i=0;i<arr.length;i++){
int j=i,cycle=0;
while(!visited[j]){
visited[j]=true;
j=arr[j]-1;
cycle++;
}
if(cycle!=0)
swap+=cycle-1;
}
return swap;
}
#Archibald, I like your solution, and such was my initial assumptions that sorting the array would be the simplest solution, but I don't see the need to go through the effort of the reverse-traverse as I've dubbed it, ie enumerating then sorting the array and then computing the swaps for the enums.
I find it simpler to subtract 1 from each element in the array and then to compute the swaps required to sort that list
here is my tweak/solution:
def swap(arr, i, j):
tmp = arr[i]
arr[i] = arr[j]
arr[j] = tmp
def minimum_swaps(arr):
a = [x - 1 for x in arr]
swaps = 0
i = 0
while i < len(a):
if a[i] == i:
i += 1
continue
swap(a, i, a[i])
swaps += 1
return swaps
As for proving optimality, I think #arax has a good point.
// Assuming that we are dealing with only sequence started with zero
function minimumSwaps(arr) {
var len = arr.length
var visitedarr = []
var i, start, j, swap = 0
for (i = 0; i < len; i++) {
if (!visitedarr[i]) {
start = j = i
var cycleNode = 1
while (arr[j] != start) {
j = arr[j]
visitedarr[j] = true
cycleNode++
}
swap += cycleNode - 1
}
}
return swap
}
I really liked the solution of #Ieuan Uys in Python.
What I improved on his solution;
While loop is iterated one less to increase speed; while i < len(a) - 1
Swap function is de-capsulated to make one, single function.
Extensive code comments are added to increase readability.
My code in python.
def minimumSwaps(arr):
#make array values starting from zero to match index values.
a = [x - 1 for x in arr]
#initialize number of swaps and iterator.
swaps = 0
i = 0
while i < len(a)-1:
if a[i] == i:
i += 1
continue
#swap.
tmp = a[i] #create temp variable assign it to a[i]
a[i] = a[tmp] #assign value of a[i] with a[tmp]
a[tmp] = tmp #assign value of a[tmp] with tmp (or initial a[i])
#calculate number of swaps.
swaps += 1
return swaps
Detailed explanation on what code does on an array with size n;
We check every value except last one (n-1 iterations) in the array one by one. If the value does not match with array index, then we send this value to its place where index value is equal to its value. For instance, if at a[0] = 3. Then this value should swap with a[3]. a[0] and a[3] is swapped. Value 3 will be at a[3] where it is supposed to be. One value is sent to its place. We have n-2 iteration left. I am not interested what is now a[0]. If it is not 0 at that location, it will be swapped by another value latter. Because that another value also exists in a wrong place, this will be recognized by while loop latter.
Real Example
a[4, 2, 1, 0, 3]
#iteration 0, check a[0]. 4 should be located at a[4] where the value is 3. Swap them.
a[3, 2, 1, 0, 4] #we sent 4 to the right location now.
#iteration 1, check a[1]. 2 should be located at a[2] where the value is 1. Swap them.
a[3, 1, 2, 0, 4] #we sent 2 to the right location now.
#iteration 2, check a[2]. 2 is already located at a[2]. Don't do anything, continue.
a[3, 1, 2, 0, 4]
#iteration 3, check a[3]. 0 should be located at a[0] where the value is 3. Swap them.
a[0, 1, 2, 3, 4] #we sent 0 to the right location now.
# There is no need to check final value of array. Since all swaps are done.
Nicely done solution by #bekce. If using C#, the initial code of setting up the modified array ar can be succinctly expressed as:
var origIndexes = Enumerable.Range(0, n).ToArray();
Array.Sort(ar, origIndexes);
then use origIndexes instead of ar in the rest of the code.
Swift 4 version:
func minimumSwaps(arr: [Int]) -> Int {
struct Pair {
let index: Int
let value: Int
}
var positions = arr.enumerated().map { Pair(index: $0, value: $1) }
positions.sort { $0.value < $1.value }
var indexes = positions.map { $0.index }
var swaps = 0
for i in 0 ..< indexes.count {
var val = indexes[i]
if val < 0 {
continue // Already visited.
}
while val != i {
let new_val = indexes[val]
indexes[val] = -1
val = new_val
swaps += 1
}
indexes[i] = -1
}
return swaps
}
This is the sample code in C++ that finds the minimum number of swaps to sort a permutation of the sequence of (1,2,3,4,5,.......n-2,n-1,n)
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,i,j,k,num = 0;
cin >> n;
int arr[n+1];
for(i = 1;i <= n;++i)cin >> arr[i];
for(i = 1;i <= n;++i)
{
if(i != arr[i])// condition to check if an element is in a cycle r nt
{
j = arr[i];
arr[i] = 0;
while(j != 0)// Here i am traversing a cycle as mentioned in
{ // first answer
k = arr[j];
arr[j] = j;
j = k;
num++;// reducing cycle by one node each time
}
num--;
}
}
for(i = 1;i <= n;++i)cout << arr[i] << " ";cout << endl;
cout << num << endl;
return 0;
}
Solution using Javascript.
First I set all the elements with their current index that need to be ordered, and then I iterate over the map to order only the elements that need to be swapped.
function minimumSwaps(arr) {
const mapUnorderedPositions = new Map()
for (let i = 0; i < arr.length; i++) {
if (arr[i] !== i+1) {
mapUnorderedPositions.set(arr[i], i)
}
}
let minSwaps = 0
while (mapUnorderedPositions.size > 1) {
const currentElement = mapUnorderedPositions.entries().next().value
const x = currentElement[0]
const y = currentElement[1]
// Skip element in map if its already ordered
if (x-1 !== y) {
// Update unordered position index of swapped element
mapUnorderedPositions.set(arr[x-1], y)
// swap in array
arr[y] = arr[x-1]
arr[x-1] = x
// Increment swaps
minSwaps++
}
mapUnorderedPositions.delete(x)
}
return minSwaps
}
If you have an input like 7 2 4 3 5 6 1, this is how the debugging will go:
Map { 7 => 0, 4 => 2, 3 => 3, 1 => 6 }
currentElement [ 7, 0 ]
swapping 1 with 7
[ 1, 2, 4, 3, 5, 6, 7 ]
currentElement [ 4, 2 ]
swapping 3 with 4
[ 1, 2, 3, 4, 5, 6, 7 ]
currentElement [ 3, 2 ]
skipped
minSwaps = 2
Finding the minimum number of swaps required to put a permutation of 1..N in order.
We can use that the we know what the sort result would be: 1..N, which means we don't actually have to do swaps just count them.
The shuffling of 1..N is called a permutation, and is composed of disjoint cyclic permutations, for example, this permutation of 1..6:
1 2 3 4 5 6
6 4 2 3 5 1
Is composed of the cyclic permutations (1,6)(2,4,3)(5)
1->6(->1) cycle: 1 swap
2->4->3(->2) cycle: 2 swaps
5(->5) cycle: 0 swaps
So a cycle of k elements requires k-1 swaps to put in order.
Since we know where each element "belongs" (i.e. value k belongs at position k-1) we can easily traverse the cycle. Start at 0, we get 6, which belongs at 5,
and there we find 1, which belongs at 0 and we're back where we started.
To avoid re-counting a cycle later, we track which elements were visited - alternatively you could perform the swaps so that the elements are in the right place when you visit them later.
The resulting code:
def minimumSwaps(arr):
visited = [False] * len(arr)
numswaps = 0
for i in range(len(arr)):
if not visited[i]:
visited[i] = True
j = arr[i]-1
while not visited[j]:
numswaps += 1
visited[j] = True
j = arr[j]-1
return numswaps
An implementation on integers with primitive types in Java (and tests).
import java.util.Arrays;
public class MinSwaps {
public static int computate(int[] unordered) {
int size = unordered.length;
int[] ordered = order(unordered);
int[] realPositions = realPositions(ordered, unordered);
boolean[] touchs = new boolean[size];
Arrays.fill(touchs, false);
int i;
int landing;
int swaps = 0;
for(i = 0; i < size; i++) {
if(!touchs[i]) {
landing = realPositions[i];
while(!touchs[landing]) {
touchs[landing] = true;
landing = realPositions[landing];
if(!touchs[landing]) { swaps++; }
}
}
}
return swaps;
}
private static int[] realPositions(int[] ordered, int[] unordered) {
int i;
int[] positions = new int[unordered.length];
for(i = 0; i < unordered.length; i++) {
positions[i] = position(ordered, unordered[i]);
}
return positions;
}
private static int position(int[] ordered, int value) {
int i;
for(i = 0; i < ordered.length; i++) {
if(ordered[i] == value) {
return i;
}
}
return -1;
}
private static int[] order(int[] unordered) {
int[] ordered = unordered.clone();
Arrays.sort(ordered);
return ordered;
}
}
Tests
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class MinimumSwapsSpec {
#Test
public void example() {
// setup
int[] unordered = new int[] { 40, 23, 1, 7, 52, 31 };
// run
int minSwaps = MinSwaps.computate(unordered);
// verify
assertEquals(5, minSwaps);
}
#Test
public void example2() {
// setup
int[] unordered = new int[] { 4, 3, 2, 1 };
// run
int minSwaps = MinSwaps.computate(unordered);
// verify
assertEquals(2, minSwaps);
}
#Test
public void example3() {
// setup
int[] unordered = new int[] {1, 5, 4, 3, 2};
// run
int minSwaps = MinSwaps.computate(unordered);
// verify
assertEquals(2, minSwaps);
}
}
Swift 4.2:
func minimumSwaps(arr: [Int]) -> Int {
let sortedValueIdx = arr.sorted().enumerated()
.reduce(into: [Int: Int](), { $0[$1.element] = $1.offset })
var checked = Array(repeating: false, count: arr.count)
var swaps = 0
for idx in 0 ..< arr.count {
if checked[idx] { continue }
var edges = 1
var cursorIdx = idx
while true {
let cursorEl = arr[cursorIdx]
let targetIdx = sortedValueIdx[cursorEl]!
if targetIdx == idx {
break
} else {
cursorIdx = targetIdx
edges += 1
}
checked[targetIdx] = true
}
swaps += edges - 1
}
return swaps
}
Python code
A = [4,3,2,1]
count = 0
for i in range (len(A)):
min_idx = i
for j in range (i+1,len(A)):
if A[min_idx] > A[j]:
min_idx = j
if min_idx > i:
A[i],A[min_idx] = A[min_idx],A[i]
count = count + 1
print "Swap required : %d" %count
In Javascript
If the count of the array starts with 1
function minimumSwaps(arr) {
var len = arr.length
var visitedarr = []
var i, start, j, swap = 0
for (i = 0; i < len; i++) {
if (!visitedarr[i]) {
start = j = i
var cycleNode = 1
while (arr[j] != start + 1) {
j = arr[j] - 1
visitedarr[j] = true
cycleNode++
}
swap += cycleNode - 1
}
}
return swap
}
else for input starting with 0
function minimumSwaps(arr) {
var len = arr.length
var visitedarr = []
var i, start, j, swap = 0
for (i = 0; i < len; i++) {
if (!visitedarr[i]) {
start = j = i
var cycleNode = 1
while (arr[j] != start) {
j = arr[j]
visitedarr[j] = true
cycleNode++
}
swap += cycleNode - 1
}
}
return swap
}
Just extending Darshan Puttaswamy code for current HackerEarth inputs
Here's a solution in Java for what #Archibald has already explained.
static int minimumSwaps(int[] arr){
int swaps = 0;
int[] arrCopy = arr.clone();
HashMap<Integer, Integer> originalPositionMap
= new HashMap<>();
for(int i = 0 ; i < arr.length ; i++){
originalPositionMap.put(arr[i], i);
}
Arrays.sort(arr);
for(int i = 0 ; i < arr.length ; i++){
while(arr[i] != arrCopy[i]){
//swap
int temp = arr[i];
arr[i] = arr[originalPositionMap.get(temp)];
arr[originalPositionMap.get(temp)] = temp;
swaps += 1;
}
}
return swaps;
}
def swap_sort(arr)
changes = 0
loop do
# Find a number that is out-of-place
_, i = arr.each_with_index.find { |val, index| val != (index + 1) }
if i != nil
# If such a number is found, then `j` is the position that the out-of-place number points to.
j = arr[i] - 1
# Swap the out-of-place number with number from position `j`.
arr[i], arr[j] = arr[j], arr[i]
# Increase swap counter.
changes += 1
else
# If there are no out-of-place number, it means the array is sorted, and we're done.
return changes
end
end
end
Apple Swift version 5.2.4
func minimumSwaps(arr: [Int]) -> Int {
var swapCount = 0
var arrayPositionValue = [(Int, Int)]()
var visitedDictionary = [Int: Bool]()
for (index, number) in arr.enumerated() {
arrayPositionValue.append((index, number))
visitedDictionary[index] = false
}
arrayPositionValue = arrayPositionValue.sorted{ $0.1 < $1.1 }
for i in 0..<arr.count {
var cycleSize = 0
var visitedIndex = i
while !visitedDictionary[visitedIndex]! {
visitedDictionary[visitedIndex] = true
visitedIndex = arrayPositionValue[visitedIndex].0
cycleSize += 1
}
if cycleSize > 0 {
swapCount += cycleSize - 1
}
}
return swapCount
}
Go version 1.17:
func minimumSwaps(arr []int32) int32 {
var swap int32
for i := 0; i < len(arr) - 1; i++{
for j := 0; j < len(arr); j++ {
if arr[j] > arr[i] {
arr[i], arr[j] = arr[j], arr[i]
swap++
}else {
continue
}
}
}
return swap
}

Mermory issue by using a for loop in R of C++ function using Rcpp

there is something unclear by using for loop with Rcpp function. here is a simple example that should help:
This is my cpp code in file test_cpp.cpp
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::mat test_Cpp(int n,
arma::vec my_vec,
Rcpp::List my_list,
int mat_size,
double lambda,
double beta) {
// Matrix of mat_size rows & mat_size columns (filled with 0)
arma::mat matrix_out(mat_size, mat_size) ;
for (int it = 0 ; it < n ; ++it) {
arma::mat temp_mat_flux_convol = my_list[it] ;
if (my_vec[it] != 0) {
matrix_out += lambda * my_vec[it] * beta * temp_mat_flux_convol ;
}
}
return matrix_out ;
}
Then from the R code why res1 and res2 are different when used in a 'useless' for loop and the same without for loop? I guess there is a segfault stuff, but I did not get it!
library(Rcpp)
library(RcppArmadillo)
sourceCpp(file = "src/test_cpp.cpp")
set.seed(123)
ls_rand = lapply(1:10, function(x) matrix(rnorm(9), ncol=3))
for(i in 1:1){
res1 <- test_Cpp(n = 10,
my_vec = 1:100,
my_list = ls_rand,
mat_size = 3,
lambda = 24,
beta = 0.4)
res2 <- test_Cpp(n = 10,
my_vec = 1:100,
my_list = ls_rand,
mat_size = 3,
lambda = 24,
beta = 0.4)
}
all.equal(res1, res2)
res1 ; res2 # here res2 is twice res1 !!!
## Without for loop
res1 <- test_Cpp(n = 10,
my_vec = 1:100,
my_list = ls_rand,
mat_size = 3,
lambda = 24,
beta = 0.4)
res2 <- test_Cpp(n = 10,
my_vec = 1:100,
my_list = ls_rand,
mat_size = 3,
lambda = 24,
beta = 0.4)
all.equal(res1, res2)
res1 ; res2 # here res1 and res2 are the same!
The error lies here:
// Matrix of mat_size rows & mat_size columns (filled with 0)
arma::mat matrix_out(mat_size, mat_size) ;
The documentation says:
mat(n_rows, n_cols) (memory is not initialised)
mat(n_rows, n_cols, fill_type) (memory is initialised)
So if you change your code to
// Matrix of mat_size rows & mat_size columns (filled with 0)
arma::mat matrix_out(mat_size, mat_size, arma::fill::zeros) ;
The comment is actually right and the problem goes away.

PyOpenCL how to modify a matrix locally within the kernel function

I am trying to modify a matrix (Pbis) locally within a pyOpenCL kernel function and when filling up this matrix with 0 it alters the result matrix R. When executing this code we obtain weird values in the R matrix. It is probably due to memory allocation but we cannot figure out how to fix it. Normally R should be exclusively composed of the init value.
program = cl.Program(context, """
__kernel void generate_paths(__global float *P, ushort const n,
ushort N, ushort init, __global float *R){
int i = get_global_id(0);
__private float* Pbis;
for (int k=0; k<n; k++){
Pbis[k] = 0;
}
for (int j=0; j<n; j++)
{
R[i*(n+1) + j] = init;
}
R[i*(n+1) + n] = init;
}
""").build()
The parameters for the generation are:
program.generate_paths(queue, res_np.shape, None, P_buf, np.uint16(n), np.uint16(N), np.uint16(init), res_buf)
Here is the entire code for reproducibility:
import numpy as np
import pyopencl as cl
import numpy.linalg as la
import os
os.environ['PYOPENCL_COMPILER_OUTPUT'] = '1'
os.environ['PYOPENCL_CTX'] = '1'
(n, N) = (3,6)
U = np.random.uniform(0,1, size=(n+1)*N)
U = U.astype(np.float32)
P = np.matrix([[0, 1/3, 1/3, 1/3], [1/3, 0, 1/3, 1/3], [1/3, 1/3, 0, 1/3], [1/3, 1/3, 1/3, 0]])
P = P.astype(np.float32)
res_np = np.zeros((N, n+1),dtype = np.float32)
platform = cl.get_platforms()[0]
device = platform.get_devices()[0]
context = cl.Context([device])
queue = cl.CommandQueue(context)
mf = cl.mem_flags
U_buf = cl.Buffer(context, mf.COPY_HOST_PTR | mf.COPY_HOST_PTR, hostbuf=U)
P_buf = cl.Buffer(context, mf.COPY_HOST_PTR | mf.COPY_HOST_PTR, hostbuf=P)
res_buf = cl.Buffer(context, mf.WRITE_ONLY, res_np.nbytes)
init = 0
program = cl.Program(context, """
__kernel void generate_paths(__global const float *U, __global float *P, ushort const n,
ushort N, ushort init, __global float *R){
int i = get_global_id(0);
int current = init;
__private float* Pbis;
for (int k=0; k<n; k++){
Pbis[k] = 0;
}
for (int j=0; j<n; j++)
{
R[i*(n+1) + j] = current;
}
R[i*(n+1) + n] = init;
}
""").build()
#prg.multiply(queue, c.shape, None,
# np.uint16(n), np.uint16(m), np.uint16(p),
# a_buf, b_buf, c_buf)
# a_mul_b = np.empty_like(c)
# cl.enqueue_copy(queue, a_mul_b, c_buf)
program.generate_paths(queue, res_np.shape, None, U_buf, P_buf, np.uint16(n), np.uint16(N), np.uint16(init), res_buf)
chem_gen = np.empty_like(res_np)
cl.enqueue_copy(queue, chem_gen, res_buf)
print("Platform Selected = %s" %platform.name)
print("Device Selected = %s" %device.name)
print("Generated Paths:")
print (chem_gen)

What does the value 0.5 represent here?

This is an implementation of Naive Bayes Classifier Algorithm.
I couldn't understand the line score.Add(results[i].Name, finalScore * 0.5);.
Where does this value 0.5 come from?
Why 0.5? Why not any other value?
public string Classify(double[] obj)
{
Dictionary<string,> score = new Dictionary<string,>();
var results = (from myRow in dataSet.Tables[0].AsEnumerable()
group myRow by myRow.Field<string>(
dataSet.Tables[0].Columns[0].ColumnName) into g
select new { Name = g.Key, Count = g.Count() }).ToList();
for (int i = 0; i < results.Count; i++)
{
List<double> subScoreList = new List<double>();
int a = 1, b = 1;
for (int k = 1; k < dataSet.Tables["Gaussian"].Columns.Count; k = k + 2)
{
double mean = Convert.ToDouble(dataSet.Tables["Gaussian"].Rows[i][a]);
double variance = Convert.ToDouble(dataSet.Tables["Gaussian"].Rows[i][++a]);
double result = Helper.NormalDist(obj[b - 1], mean, Helper.SquareRoot(variance));
subScoreList.Add(result);
a++; b++;
}
double finalScore = 0;
for (int z = 0; z < subScoreList.Count; z++)
{
if (finalScore == 0)
{
finalScore = subScoreList[z];
continue;
}
finalScore = finalScore * subScoreList[z];
}
score.Add(results[i].Name, finalScore * 0.5);
}
double maxOne = score.Max(c => c.Value);
var name = (from c in score
where c.Value == maxOne
select c.Key).First();
return name;
}
I figured it out.
0.5 is the apriori probability.

Resources