Clang thread safety annotation and shared capabilities - multithreading

The following code is generating one warning when I use clang thread annotations. I am trying to wrap boost::shared_mutex and boost::shared_lock. How can I express that this lock is a shared lock using the thread annotations?
source code:
#include <mutex>
#include "boost/thread/shared_mutex.hpp"
class __attribute__((shared_capability("mutex"))) BoostSharedMutex {
public:
boost::shared_mutex &getNativeHandle() { return m_mutex; }
private:
mutable boost::shared_mutex m_mutex;
};
class __attribute__((scoped_lockable)) MutexSharedLock {
public:
explicit MutexSharedLock(BoostSharedMutex &mutex) __attribute__((acquire_shared_capability(mutex)))
: m_lock(mutex.getNativeHandle()) {}
~MutexSharedLock() __attribute__((release_shared_capability())) = default;
private:
boost::shared_lock<boost::shared_mutex> m_lock;
};
int main() {
BoostSharedMutex mutex;
MutexSharedLock lock(mutex);
}
clang output:
clang++-3.6 --std=c++11 -Wall -Wthread-safety /tmp/foo.cpp -lboost_system
/tmp/foo.cpp:25:5: warning: releasing mutex 'lock' using shared access, expected exclusive access [-Wthread-safety-analysis]
}
^
1 warning generated.
EDIT: this compiles but seems wrong. Is it a problem on my side?
#include <mutex>
#include "boost/thread/shared_mutex.hpp"
class __attribute__((shared_capability("mutex"))) BoostSharedMutex {
public:
boost::shared_mutex &getNativeHandle() { return m_mutex; }
private:
mutable boost::shared_mutex m_mutex;
};
class __attribute__((scoped_lockable)) MutexSharedLock {
public:
explicit MutexSharedLock(BoostSharedMutex &mutex) __attribute__((acquire_capability(mutex))) // changed from acquired_shared_capability
: m_lock(mutex.getNativeHandle()) {}
~MutexSharedLock() __attribute__((release_capability())) = default; // changed from release_shared_capability
private:
boost::shared_lock<boost::shared_mutex> m_lock;
};
BoostSharedMutex mutex;
int locked_variable __attribute__((guarded_by(mutex)));
int main() {
MutexSharedLock lock(mutex);
std::cout << locked_variable << std::endl; // ok, guarded variable is only read
locked_variable = 42; // no warning while writing in the guarded variable while only holding a non-exclusive lock?
}

After trying several combinations, this seems to work:
#include <mutex>
#include "boost/thread/shared_mutex.hpp"
class __attribute__((capability("mutex"))) BoostSharedMutex {
public:
boost::shared_mutex &getNativeHandle() { return m_mutex; }
private:
mutable boost::shared_mutex m_mutex;
};
class __attribute__((scoped_lockable)) MutexSharedLock {
public:
explicit MutexSharedLock(BoostSharedMutex &mutex) __attribute__((acquire_shared_capability(mutex)))
: m_lock(mutex.getNativeHandle()) {}
~MutexSharedLock() __attribute__((release_capability())) = default;
private:
boost::shared_lock<boost::shared_mutex> m_lock;
};
class __attribute__((scoped_lockable)) MutexLock {
public:
explicit MutexLock(BoostSharedMutex &mutex) __attribute__((acquire_capability(mutex)))
: m_lock(mutex.getNativeHandle()) {}
~MutexLock() __attribute__((release_capability())) = default;
private:
std::unique_lock<boost::shared_mutex> m_lock;
};
BoostSharedMutex mutex;
int locked_variable __attribute__((guarded_by(mutex)));
int main() {
{
MutexSharedLock lock(mutex);
std::cout << locked_variable << std::endl;
// locked_variable = 42; -- triger a error as expected
}
{
MutexLock lock(mutex);
std::cout << locked_variable << std::endl;
locked_variable = 42;
}
}
I would be curious to hear why the MutexSharedLock should use acquire_shared_capability but release with release_capability ...
(I will let the question open in case anyone can confirm the code is correct now)

Just use unlock_function instead of release_shared_capability.
Same true also for try_acquire_capability/try_acquire_shared_capability - they just don't work, but previous exclusive_trylock_function/shared_trylock_function works well.
M.b. it is bug in clang.

Related

Wait for thread queue to be empty

I am new to C++ and multithreading applications. I want to process a long list of data (potentially several thousands of entries) by dividing its entries among a few threads. I have retrieved a ThreadPool class and a Queue class from the web (it is my first time tackling the subject). I construct the threads and populate the queue in the following way (definitions at the end of the post):
ThreadPool *pool = new ThreadPool(8);
std::vector<std::function<void(int)>> *caller =
new std::vector<std::function<void(int)>>;
for (size_t i = 0; i < Nentries; ++i)
{
caller->push_back(
[=](int j){func(entries[i], j);});
pool->PushTask((*caller)[i]);
}
delete pool;
The problem is that only a number of entries equaling the number of created threads are processed, as if the program does not wait for the queue to be empty. Indeed, if I put
while (pool->GetWorkQueueLength()) {}
just before the pool destructor, the whole list is correctly processed. However, I am afraid I am consuming too many resources by using a while loop. Moreover, I have not found anyone doing anything like it, so I think this is the wrong approach and the classes I use have some error. Can anyone find the error (if present) or suggest another solution?
Here are the classes I use. I suppose the problem is in the implementation of the destructor, but I am not sure.
SynchronizeQueue.hh
#ifndef SYNCQUEUE_H
#define SYNCQUEUE_H
#include <list>
#include <mutex>
#include <condition_variable>
template<typename T>
class SynchronizedQueue
{
public:
SynchronizedQueue();
void Put(T const & data);
T Get();
size_t Size();
private:
SynchronizedQueue(SynchronizedQueue const &)=delete;
SynchronizedQueue & operator=(SynchronizedQueue const &)=delete;
std::list<T> queue;
std::mutex mut;
std::condition_variable condvar;
};
template<typename T>
SynchronizedQueue<T>::SynchronizedQueue()
{}
template<typename T>
void SynchronizedQueue<T>::Put(T const & data)
{
std::unique_lock<std::mutex> lck(mut);
queue.push_back(data);
condvar.notify_one();
}
template<typename T>
T SynchronizedQueue<T>::Get()
{
std::unique_lock<std::mutex> lck(mut);
while (queue.empty())
{
condvar.wait(lck);
}
T result = queue.front();
queue.pop_front();
return result;
}
template<typename T>
size_t SynchronizedQueue<T>::Size()
{
std::unique_lock<std::mutex> lck(mut);
return queue.size();
}
#endif
ThreadPool.hh
#ifndef THREADPOOL_H
#define THREADPOOL_H
#include "SynchronizedQueue.hh"
#include <atomic>
#include <functional>
#include <mutex>
#include <thread>
#include <vector>
class ThreadPool
{
public:
ThreadPool(int nThreads = 0);
virtual ~ThreadPool();
void PushTask(std::function<void(int)> func);
size_t GetWorkQueueLength();
private:
void WorkerThread(int i);
std::atomic<bool> done;
unsigned int threadCount;
SynchronizedQueue<std::function<void(int)>> workQueue;
std::vector<std::thread> threads;
};
#endif
ThreadPool.cc
#include "ThreadPool.hh"
#include "SynchronizedQueue.hh"
void doNothing(int i)
{}
ThreadPool::ThreadPool(int nThreads)
: done(false)
{
if (nThreads <= 0)
{
threadCount = std::thread::hardware_concurrency();
}
else
{
threadCount = nThreads;
}
for (unsigned int i = 0; i < threadCount; ++i)
{
threads.push_back(std::thread(&ThreadPool::WorkerThread, this, i));
}
}
ThreadPool::~ThreadPool()
{
done = true;
for (unsigned int i = 0; i < threadCount; ++i)
{
PushTask(&doNothing);
}
for (auto& th : threads)
{
if (th.joinable())
{
th.join();
}
}
}
void ThreadPool::PushTask(std::function<void(int)> func)
{
workQueue.Put(func);
}
void ThreadPool::WorkerThread(int i)
{
while (!done)
{
workQueue.Get()(i);
}
}
size_t ThreadPool::GetWorkQueueLength()
{
return workQueue.Size();
}
You can push tasks saying "done" instead of setting "done" via atomic variable.
So that each thread will exit by itself when seeing "done" task, and no earlier. In destructor you only need to push these tasks and join threads. This is called "poison pill".
Alternatively, if you insist on your current design with done variable, you can wait on the same condition you already have:
std::unique_lock<std::mutex> lck(mut);
while (!queue.empty())
{
condvar.wait(lck);
}
But then you'll need to change your notify_one to notify_all, and this may be sub-optimal.
I want to process a long list of data (potentially several thousands of entries) by dividing its entries among a few threads.
You can do that with parallel algorithms, like tbb::parallel_for:
#include <tbb/parallel_for.h>
#include <vector>
void func(int entry);
int main () {
std::vector<int> entries(1000000);
tbb::parallel_for(size_t{0}, entries.size(), [&](size_t i) { func(entries[i]); });
}
If you need sequential thread ids, you can do:
void func(int element, int thread_id);
template<class C>
inline auto make_range(C& c) -> decltype(tbb::blocked_range<decltype(c.begin())>(c.begin(), c.end())) {
return tbb::blocked_range<decltype(c.begin())>(c.begin(), c.end());
}
int main () {
std::vector<int> entries(1000000);
std::atomic<int> thread_counter{0};
tbb::parallel_for(make_range(entries), [&](auto sub_range) {
static thread_local int const thread_id = thread_counter.fetch_add(1, std::memory_order_relaxed);
for(auto& element : sub_range)
func(element, thread_id);
});
}
Alternatively, there is std::this_thread::get_id.

how to invoke thread without creating static function [duplicate]

I am trying to construct a std::thread with a member function that takes no arguments and returns void. I can't figure out any syntax that works - the compiler complains no matter what. What is the correct way to implement spawn() so that it returns a std::thread that executes test()?
#include <thread>
class blub {
void test() {
}
public:
std::thread spawn() {
return { test };
}
};
#include <thread>
#include <iostream>
class bar {
public:
void foo() {
std::cout << "hello from member function" << std::endl;
}
};
int main()
{
std::thread t(&bar::foo, bar());
t.join();
}
EDIT:
Accounting your edit, you have to do it like this:
std::thread spawn() {
return std::thread(&blub::test, this);
}
UPDATE: I want to explain some more points, some of them have also been discussed in the comments.
The syntax described above is defined in terms of the INVOKE definition (ยง20.8.2.1):
Define INVOKE (f, t1, t2, ..., tN) as follows:
(t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is an object of type T or a reference to an object of
type T or a reference to an object of a type derived from T;
((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a class T and t1 is not one of the types described in the previous
item;
t1.*f when N == 1 and f is a pointer to member data of a class T and t 1 is an object of type T or a
reference to an object of type T or a reference to an object of a
type derived from T;
(*t1).*f when N == 1 and f is a pointer to member data of a class T and t 1 is not one of the types described in the previous item;
f(t1, t2, ..., tN) in all other cases.
Another general fact which I want to point out is that by default the thread constructor will copy all arguments passed to it. The reason for this is that the arguments may need to outlive the calling thread, copying the arguments guarantees that. Instead, if you want to really pass a reference, you can use a std::reference_wrapper created by std::ref.
std::thread (foo, std::ref(arg1));
By doing this, you are promising that you will take care of guaranteeing that the arguments will still exist when the thread operates on them.
Note that all the things mentioned above can also be applied to std::async and std::bind.
Since you are using C++11, lambda-expression is a nice&clean solution.
class blub {
void test() {}
public:
std::thread spawn() {
return std::thread( [this] { this->test(); } );
}
};
since this-> can be omitted, it could be shorten to:
std::thread( [this] { test(); } )
or just (deprecated)
std::thread( [=] { test(); } )
Here is a complete example
#include <thread>
#include <iostream>
class Wrapper {
public:
void member1() {
std::cout << "i am member1" << std::endl;
}
void member2(const char *arg1, unsigned arg2) {
std::cout << "i am member2 and my first arg is (" << arg1 << ") and second arg is (" << arg2 << ")" << std::endl;
}
std::thread member1Thread() {
return std::thread([=] { member1(); });
}
std::thread member2Thread(const char *arg1, unsigned arg2) {
return std::thread([=] { member2(arg1, arg2); });
}
};
int main(int argc, char **argv) {
Wrapper *w = new Wrapper();
std::thread tw1 = w->member1Thread();
std::thread tw2 = w->member2Thread("hello", 100);
tw1.join();
tw2.join();
return 0;
}
Compiling with g++ produces the following result
g++ -Wall -std=c++11 hello.cc -o hello -pthread
i am member1
i am member2 and my first arg is (hello) and second arg is (100)
#hop5 and #RnMss suggested to use C++11 lambdas, but if you deal with pointers, you can use them directly:
#include <thread>
#include <iostream>
class CFoo {
public:
int m_i = 0;
void bar() {
++m_i;
}
};
int main() {
CFoo foo;
std::thread t1(&CFoo::bar, &foo);
t1.join();
std::thread t2(&CFoo::bar, &foo);
t2.join();
std::cout << foo.m_i << std::endl;
return 0;
}
outputs
2
Rewritten sample from this answer would be then:
#include <thread>
#include <iostream>
class Wrapper {
public:
void member1() {
std::cout << "i am member1" << std::endl;
}
void member2(const char *arg1, unsigned arg2) {
std::cout << "i am member2 and my first arg is (" << arg1 << ") and second arg is (" << arg2 << ")" << std::endl;
}
std::thread member1Thread() {
return std::thread(&Wrapper::member1, this);
}
std::thread member2Thread(const char *arg1, unsigned arg2) {
return std::thread(&Wrapper::member2, this, arg1, arg2);
}
};
int main() {
Wrapper *w = new Wrapper();
std::thread tw1 = w->member1Thread();
tw1.join();
std::thread tw2 = w->member2Thread("hello", 100);
tw2.join();
return 0;
}
Some users have already given their answer and explained it very well.
I would like to add few more things related to thread.
How to work with functor and thread.
Please refer to below example.
The thread will make its own copy of the object while passing the object.
#include<thread>
#include<Windows.h>
#include<iostream>
using namespace std;
class CB
{
public:
CB()
{
cout << "this=" << this << endl;
}
void operator()();
};
void CB::operator()()
{
cout << "this=" << this << endl;
for (int i = 0; i < 5; i++)
{
cout << "CB()=" << i << endl;
Sleep(1000);
}
}
void main()
{
CB obj; // please note the address of obj.
thread t(obj); // here obj will be passed by value
//i.e. thread will make it own local copy of it.
// we can confirm it by matching the address of
//object printed in the constructor
// and address of the obj printed in the function
t.join();
}
Another way of achieving the same thing is like:
void main()
{
thread t((CB()));
t.join();
}
But if you want to pass the object by reference then use the below syntax:
void main()
{
CB obj;
//thread t(obj);
thread t(std::ref(obj));
t.join();
}

Overridden virtual function not called from thread

I am writing a base class to manage threads. The idea is to allow the thread function to be overridden in child class while the base class manages thread life cycle. I ran into a strange behavior which I don't understand - it seems that the virtual function mechanism does not work when the call is made from a thread. To illustrate my problem, I reduced my code to the following:
#include <iostream>
#include <thread>
using namespace std;
struct B
{
thread t;
void thread_func_non_virt()
{
thread_func();
}
virtual void thread_func()
{
cout << "B::thread_func\n";
}
B(): t(thread(&B::thread_func_non_virt, this)) { }
void join() { t.join(); }
};
struct C : B
{
virtual void thread_func() override
{
cout << "C::thread_func\n";
}
};
int main()
{
C c; // output is "B::thread_func" but "C::thread_func" is expected
c.join();
c.thread_func_non_virt(); // output "C::thread_func" as expected
}
I tried with both Visual studio 2017 and g++ 5.4 (Ubuntu 16) and found the behavior is consistent. Can someone point out where I got wrong?
== UPDATE ==
Based on Igor's answer, I moved the thread creation out of the constructor into a separate method and calling that method after the constructor and got the desired behavior.
Your program exhibits undefined behavior. There's a race on *this between thread_func and C's (implicitly defined) constructor.
#include <iostream>
#include <thread>
using namespace std;
struct B
{
thread t;
void thread_func_non_virt()
{
thread_func();
}
virtual void thread_func()
{
cout << "B::thread_func\n";
}
B(B*ptr): t(thread(&B::thread_func_non_virt, ptr))
{
}
void join() { t.join(); }
};
struct C:public B
{
C():B(this){}
virtual void thread_func() override
{
cout << "C::thread_func\n";
}
};
int main()
{
C c; // "C::thread_func" is expected as expected
c.join();
c.thread_func_non_virt(); // output "C::thread_func" as expected
}

Share std::map between processes with mmap()

I'm trying to share a std::map<std::string, std::chrono::system_clock::time_point> map: each string is a hostname identifying a site, and the time_point is the last time a process visited that site.
I was trying with mmap but each process still see its own copy of the map.
Here's my code (I took away all the methods and variables not concerning my problem):
#include <sys/mman.h>
#include <unistd.h>
#include <iostream>
#include <map>
#include <string>
#include <chrono>
typedef std::map<std::string, std::chrono::system_clock::time_point> mymap;
typedef mymap::iterator iter;
typedef mymap* mapPointer;
class MmapManager {
private:
MmapManager() {
frequency = (mapPointer) mmap(NULL, sizeof(frequency), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (frequency == MAP_FAILED) {
std::cout << "mapping failed" << std::endl;
}
};
~MmapManager() {
std::cout << "~MmapManager()" << std::endl;
}
public:
// my class was designed with the singleton pattern
static MmapManager& getInstance() {
static MmapManager instance;
return instance;
}
private:
// pointer to my map
mapPointer frequency;
public:
// check if the process already visited site "host"
bool isHostAlreadyVisited(std::string host) {
return frequency->find(host) != frequency->end();
}
// add new visited site and time of the visit
void addHost(std::string host) {
(*frequency)[host] = std::chrono::system_clock::now();
std::cout << "PROC " << getpid() << " added " << host << std::endl;
}
// get time of the visit for site "host"
std::chrono::system_clock::time_point getElement(std::string host) {
return (*frequency)[host];
}
// print the map
void showMap(void) {
std::cout << "PROC " << getpid() << " prints map keys" << std::endl;
for (auto it = frequency->begin(); it != frequency->end(); ++it) {
std::cout << it->first << std::endl;
}
}
};
int main(void) {
// simulate the processes
for (int i=0; i<5; i++) {
// child process
if (fork() == 0) {
// if child never visited this site...
if (! MmapManager::getInstance().isHostAlreadyVisited("www.google.com")) {
std::cout << "PID " << getpid() << " www.google.com is new" << std::endl;
// ...add it to the map
MmapManager::getInstance().addHost("www.google.com");
}
else {
// if child already visited it, calculate
// how much time passed since last visit
auto now = std::chrono::system_clock::now();
auto before = MmapManager::getInstance().getElement("www.google.com");
std::chrono::duration<double> diff = now-before;
std::cout << "PID " << getpid() << " visited www.google.com " << diff.count() << " seconds ago" << std::endl;
}
MmapManager::getInstance().showMap();
_exit(EXIT_SUCCESS);
}
}
return 0;
}
Here's one of the possible outputs:
PID 12457 www.google.com is new
PID 12459 www.google.com is new
PID 12458 www.google.com is new
PID 12460 www.google.com is new
PID 12461 www.google.com is new
I can't use other external libraries like Boost or use threads: I know they share memory, but the program was designed this way (with child processes doing stuff) and I can't modify it (original code is not mine).
Why does each process still see its own copy of the map?
Edit: I think I did all the things you suggested me:
insertion in map is protected with a lock mechanism (thanks kfsone);
created a custom allocator for string and another for map (thanks Maxim Egorushkin for these two);
map is allocated before forking (thanks Zan Lynx).
The output is not different and map is still not shared:
MmapManager()
printMap
map empty
PID 5085 www.google.com is new
PID 5086 www.google.com is new
PROC 5086 added www.goole.com
PROC 5085 added www.goole.com
PID 5087 www.google.com is new
PROC 5087 added www.goole.com
You suggested me to use Boost but I'd like to use it after my code will work: I'm not reinventing the wheel, just learning the hard way.
Here follows my new code:
#include <sys/mman.h>
#include <unistd.h>
#include <sys/shm.h> /* shmat(), IPC_RMID */
#include <semaphore.h> /* sem_open(), sem_destroy(), sem_wait().. */
#include <fcntl.h> /* O_CREAT, O_EXEC */
#include <stdlib.h>
#include <iostream>
#include <map>
#include <string>
#include <chrono>
#include <cstddef>
#include <vector>
#include <limits>
#include <memory>
template<typename T> class stringAllocator {
public :
typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef T const * const_pointer;
typedef T& reference;
typedef T const & const_reference;
template<typename U> struct rebind {
typedef stringAllocator<U> other;
};
pointer address (reference value ) const {
return &value;
}
const_pointer address (const_reference value) const {
return &value;
}
size_type max_size () const throw() {
return std::numeric_limits <size_type>::max() / sizeof(T);
}
stringAllocator () throw () {}
stringAllocator (stringAllocator const &) throw () {}
template <typename U>
stringAllocator(stringAllocator <U> const &) throw () {}
~stringAllocator() throw () {}
pointer allocate (size_type n) {
pointer ptr = (pointer)malloc(n * sizeof(value_type));
return ptr;
}
void deallocate (pointer p, size_type n) {
free(p);
}
void construct (pointer p, const_reference value) {
new(p) T(value);
}
void destroy (pointer p) {
p->~T();
}
};
template <class T1, class T2>
bool operator==(const stringAllocator<T1>&, const stringAllocator<T2>&) throw() {
return true;
}
template <class T1, class T2>
bool operator!=(const stringAllocator<T1>&, const stringAllocator<T2>&) throw() {
return false;
}
typedef std::basic_string<
char,
std::char_traits<char>,
stringAllocator<char>
> myString;
/*************************************** map allocator ****************************************/
template<typename T> class mapAllocator{
public :
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template<typename U>
struct rebind {
typedef mapAllocator<U> other;
};
mapAllocator() throw() {}
mapAllocator (mapAllocator const &) throw () {}
~mapAllocator() throw () {}
template<typename U>
mapAllocator(mapAllocator<U> const&) {}
pointer address(reference r) { return &r; }
const_pointer address(const_reference r) { return &r; }
pointer allocate(size_type cnt, typename std::allocator<void>::const_pointer = 0) {
pointer new_memory = reinterpret_cast<pointer>(::operator new(cnt * sizeof (T)));
return new_memory;
}
void deallocate(pointer p, size_type n) {
::operator delete(p);
}
size_type max_size() const {
return std::numeric_limits<size_type>::max() / sizeof(T);
}
void construct(pointer p, const T& t) {
new(p) T(t);
}
void destroy(pointer p) {
p->~T();
}
};
template <class T1, class T2>
bool operator==(const mapAllocator<T1>&, const mapAllocator<T2>&) throw() {
return true;
}
template <class T1, class T2>
bool operator!=(const mapAllocator<T1>&, const mapAllocator<T2>&) throw() {
return false;
}
/*************************************** end map allocator ****************************************/
// class compare for map with std::string as Key
class strless {
public:
bool operator() (const myString first, const myString second ) const {
return first.compare(second) < 0;
}
};
template<typename Key, typename T>
using Map = std::map<
Key, // class Key
T, // class T
strless, // class Compare = std::less<Key>
mapAllocator<std::pair<const Key, T> // class Allocator = std::allocator<std::pair<const Key, T> >
>
>;
// typedef for the actual map I need to share between processes
typedef Map<myString, std::chrono::system_clock::time_point> frequencyMap;
class MmapManager {
private:
MmapManager() {
std::cout << "MmapManager()" << std::endl;
semMmap = sem_open("semaphore", O_CREAT|O_EXCL, 0644, 1);
sem_unlink("semaphore");
};
~MmapManager() {
std::cout << "~MmapManager()" << std::endl;
}
public:
static MmapManager& getInstance() {
static MmapManager instance;
return instance;
}
private:
frequencyMap fmap;
sem_t *semMmap;
public:
void start(void) {}
bool isHostAlreadyVisited(myString host) {
return fmap.find(host) != fmap.end();
}
void addHost(myString host) {
sem_wait(semMmap);
fmap[host] = std::chrono::system_clock::now();
sem_post(semMmap);
std::cout << "PROC " << getpid() << " added " << host << std::endl;
}
// get time of the visit for site "host"
std::chrono::system_clock::time_point getElement(myString host) {
return fmap[host];
}
void printMap(void) {
std::cout << "printMap" << std::endl;
if (!fmap.empty()) {
for (auto it : fmap) {
std::cout << it.first << ' ';
}
std::cout << std::endl;
} else {
std::cout << "map empty" << std::endl;
}
}
};
int main(void) {
MmapManager::getInstance().start();
for (int i=0; i<3; i++) {
if (fork() == 0) {
if (!MmapManager::getInstance().isHostAlreadyVisited("www.google.com")) {
std::cout << "PID " << getpid() << " www.google.com is new" << std::endl;
MmapManager::getInstance().addHost("www.goole.com");
}
else {
// if child already visited it, calculate
// how much time passed since last visit
auto now = std::chrono::system_clock::now();
auto before = MmapManager::getInstance().getElement("www.google.com");
std::chrono::duration<double> diff = now-before;
std::cout << "PID " << getpid() << " visited www.google.com " << diff.count() << " seconds ago" << std::endl;
}
_exit(EXIT_SUCCESS);
}
}
MmapManager::getInstance().printMap();
return 0;
}
This does not work because although you placed the container object into the shared memory, the elements are still allocated from the heap and thus they are not accessible by other processes.
You need a custom allocator that allocates elements in the shared memory. See Creating maps in shared memory for how it is done.
Note that the string class you use must also allocate memory from the shared memory.
In other words, you cannot have pointers to heap memory in the shared memory, because heap memory is not shared between processes. std classes have an allocator template argument, the default one allocates memory from the heap. This needs to be changed to a shared memory allocator to be able to share such objects via shared memory.
Another reason your code doesn't work is that you only create the maps after you called fork().
If you want your MAP_SHARED|MAP_ANONYMOUS map to be seen by all the children then you have to call mmap() before forking.

Creating a QWidget in a non-GUI thread

Yes, I know that you cannot use GUI things from non-GUI threads. However, it seems reasonable to be able to create a QWidget object, send it to the GUI thread, and then send signals to it. However, when I try to do so, I get errors that widgets cannot be moved. However, this seems to works:
#include <iostream>
#include <QApplication>
#include <QtConcurrentRun>
#include <QDialog>
class BasicViewer : public QDialog
{
Q_OBJECT
public:
void Function(const float a)
{
std::cout << a << std::endl;
}
};
struct BasicViewerWrapper : public QObject
{
Q_OBJECT
public:
BasicViewer WrappedBasicViewer;
void Function(const float a)
{
WrappedBasicViewer.Function(a);
}
};
#include "main.moc" // For CMake's automoc
void Function2()
{
BasicViewerWrapper basicViewerWrapper;
basicViewerWrapper.moveToThread(QCoreApplication::instance()->thread());
basicViewerWrapper.Function(2.0f);
}
void Function1()
{
Function2();
}
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QtConcurrent::run(Function1);
std::cout << "End" << std::endl;
return app.exec();
}
I have created a wrapper class with the same API as the QWidget that stores an instance of the QWidget I wanted to create directly. I AM allowed to create that wrapper, move it to the GUI thread, and then use it. My question is, is there a way to do this without having to write this wrapper? It seems quite tedious, and since the concept works, I don't understand why it cannot be done directly. Any thoughts?
----------- EDIT ---------------
The first example was a bad one, because it did not attempt to do anything with GUI elements. This example indeed generates "Cannot create children for a parent that is in a different thread."
#include <iostream>
#include <QApplication>
#include <QtConcurrentRun>
#include <QMessageBox>
class BasicViewer : public QMessageBox
{
Q_OBJECT
public:
};
struct BasicViewerWrapper : public QObject
{
Q_OBJECT
public:
BasicViewer WrappedBasicViewer;
void exec()
{
WrappedBasicViewer.exec();
}
};
#include "main.moc" // For CMake's automoc
void Function2()
{
BasicViewerWrapper basicViewerWrapper;
basicViewerWrapper.moveToThread(QCoreApplication::instance()->thread());
basicViewerWrapper.exec();
}
void Function1()
{
Function2();
}
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QtConcurrent::run(Function1);
return app.exec();
}
----------- EDIT 2 ----------------
I thought this would work, since the member object gets created after the thread of the Wrapper has been moved:
#include <iostream>
#include <QApplication>
#include <QtConcurrentRun>
#include <QMessageBox>
class BasicViewer : public QMessageBox
{
Q_OBJECT
public:
};
struct BasicViewerWrapper : public QObject
{
Q_OBJECT
public:
BasicViewer* WrappedBasicViewer;
void exec()
{
WrappedBasicViewer->exec();
}
void create()
{
WrappedBasicViewer = new BasicViewer;
}
};
#include "main.moc" // For CMake's automoc
void Function2()
{
BasicViewerWrapper basicViewerWrapper;
basicViewerWrapper.moveToThread(QCoreApplication::instance()->thread());
basicViewerWrapper.create();
basicViewerWrapper.exec();
}
void Function1()
{
Function2();
}
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QtConcurrent::run(Function1);
return app.exec();
}
Unfortunately, it does not. Can anyone explain why?
--------------- EDIT 3 --------------------
I'm unsure why this works? It uses a signal to trigger the GUI component, but isn't the GUI object (the QDialog) still created in the non-GUI thread?
#include <iostream>
#include <QApplication>
#include <QtConcurrentRun>
#include <QMessageBox>
class DialogHandler : public QObject
{
Q_OBJECT
signals:
void MySignal(int* returnValue);
public:
DialogHandler()
{
connect( this, SIGNAL( MySignal(int*) ), this, SLOT(MySlot(int*)), Qt::BlockingQueuedConnection );
}
void EmitSignal(int* returnValue)
{
emit MySignal(returnValue);
}
public slots:
void MySlot(int* returnValue)
{
std::cout << "input: " << *returnValue << std::endl;
QMessageBox* dialog = new QMessageBox;
dialog->addButton(QMessageBox::Yes);
dialog->addButton(QMessageBox::No);
dialog->setText("Test Text");
dialog->exec();
int result = dialog->result();
if(result == QMessageBox::Yes)
{
*returnValue = 1;
}
else
{
*returnValue = 0;
}
delete dialog;
}
};
#include "main.moc" // For CMake's automoc
void MyFunction()
{
DialogHandler* dialogHandler = new DialogHandler;
dialogHandler->moveToThread(QCoreApplication::instance()->thread());
int returnValue = -1;
dialogHandler->EmitSignal(&returnValue);
std::cout << "returnValue: " << returnValue << std::endl;
}
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QtConcurrent::run(MyFunction);
std::cout << "End" << std::endl;
return app.exec();
}
Qt insists that widgets be created within the GUI thread. It disables moving widgets to different threads to prevent them from existing outside of the GUI thread. Your example above does not, in fact, move the BasicViewer to a different thread; it only moves BasicViewerWrapper to a different thread. You can see this if you print out the pointer to the containing thread within BasicViewerWrapper::Function and BasicViewer::Function:
std::cout << std::hex << thread() << std::endl;
If you really wish to trigger the creation of widgets from outside the GUI thread, it is more advisable for other threads to notify the GUI thread to create the widgets that you desire. You can either emit a signal from the non-GUI thread that connects to a slot in the GUI thread that creates the widgets, or you can invoke a function within the GUI thread to create the widgets for you using QMetaObject::invokeMethod.
EDIT
Unfortunately, there is no way to invoke a method in a different thread other than QMetaObject::invokeMethod if you are attempting to perform the invocation outside of a QObject. In the past, I've tried to tackle readability by placing the method invocation in a separate class or function, but admittedly, it's not perfect.
Your 3rd example is not working because QObject::moveToThread is not synchronous. Control must return to the destination thread's event loop before the object is actually moved to the destination thread. As such, you probably need a combination of a sleep statement and a call to QCoreApplication::processEvents after calling moveToThread. After these calls, you should probably call basicViewerWrapper::create() and basicViewerWrapper::exec() via QMetaObject::invokeMethod.

Resources