I think it's best if I describe my intent and try to break it down to code.
I want users to have the ability of complex queries should they choose to that query_string offers. For example 'AND' and 'OR' and '~', etc.
I want to have fuzziness in effect, which has made me do things I feel dirty about like "#{query}~" to the sent to ES, in other words I am specifying fuzzy query on the user's behalf because we offer transliteration which could be difficult to get the exact spelling.
At times, users search a number of words that are suppose to be in a phrase. query_string searches them individually and not as a phrase. For example 'he who will' should bring me the top match to be when those three words are in that order, then give me whatever later.
Current query:
{
"indices_boost": {},
"aggregations": {
"by_ayah_key": {
"terms": {
"field": "ayah.ayah_key",
"size": 6236,
"order": {
"average_score": "desc"
}
},
"aggregations": {
"match": {
"top_hits": {
"highlight": {
"fields": {
"text": {
"type": "fvh",
"matched_fields": [
"text.root",
"text.stem_clean",
"text.lemma_clean",
"text.stemmed",
"text"
],
"number_of_fragments": 0
}
},
"tags_schema": "styled"
},
"sort": [
{
"_score": {
"order": "desc"
}
}
],
"_source": {
"include": [
"text",
"resource.*",
"language.*"
]
},
"size": 5
}
},
"average_score": {
"avg": {
"script": "_score"
}
}
}
}
},
"from": 0,
"size": 0,
"_source": [
"text",
"resource.*",
"language.*"
],
"query": {
"bool": {
"must": [
{
"query_string": {
"query": "inna alatheena",
"fuzziness": 1,
"fields": [
"text^1.6",
"text.stemmed"
],
"minimum_should_match": "85%"
}
}
],
"should": [
{
"match": {
"text": {
"query": "inna alatheena",
"type": "phrase"
}
}
}
]
}
}
}
Note: alatheena searched without the ~ will not return anything although I have allatheena in the indices. So I must do a fuzzy search.
Any thoughts?
I see that you're doing ES indexing of Qur'anic verses, +1 ...
Much of your problem domain, if I understood it correctly, can be solved simply by storing lots of transliteration variants (and permutations of their combining) in a separate field on your Aayah documents.
First off, you should make a char filter that replaces all double letters with single letters [aa] => [a], [ll] => [l]
Maybe also make a separate field containing all of [a, e, i] (because of their "vocative"/transcribal ambiguity) replaced with € or something similar, and do the same while querying in order to get as many matches as possible...
Also, TH in "allatheena" (which as a footnote may really be Dhaal, Thaa, Zhaa, Taa+Haa, Taa+Hhaa, Ttaa+Hhaa transcribed ...) should be replaced by something, or both the Dhaal AND the Thaa should be transcribed multiple times.
Then, because it's Qur'anic script, all Alefs without diacritics, Hamza, Madda, etc should be treated as Alef (or Hamzat) ul-Wasl, and that should also be considered when indexing / searching, because of Waqf / Wasl in reading arabic. (consider all the Wasl`s in the first Aayah of Surat Al-Alaq for example)
Dunno if this is answering your question in any way, but I hope it's of some assistance in implementing your application nontheless.
You should use Dis Max Query to achieve that.
A query that generates the union of documents produced by its
subqueries, and that scores each document with the maximum score for
that document as produced by any subquery, plus a tie breaking
increment for any additional matching subqueries.
This is useful when searching for a word in multiple fields with
different boost factors (so that the fields cannot be combined
equivalently into a single search field). We want the primary score to
be the one associated with the highest boost.
Quick example how to use it:
POST /_search
{
"query": {
"dis_max": {
"tie_breaker": 0.7,
"boost": 1.2,
"queries": [
{
"match": {
"text": {
"query": "inna alatheena",
"type": "phrase",
"boost": 5
}
}
},
{
"match": {
"text": {
"query": "inna alatheena",
"type": "phrase",
"fuzziness": "AUTO",
"boost": 3
}
}
},
{
"query_string": {
"default_field": "text",
"query": "inna alatheena"
}
}
]
}
}
}
It will run all of your queries, and the one, which scored highest compared to others, will be taken. So just define your rules using it. You should achieve what you wanted.
Related
I'm struggling with something that should be easy but it's making no sense to me, I have these 2 documents in a database:
{ "name": "foo", "type": "typeA" },
{ "name": "bar", "type": "typeB" }
And I'm posting this to _find:
{
"selector": {
"type": "typeA"
},
"sort": ["name"]
}
Which works as expected but I get a warning that there's no matching index, so I've tried posting various combinations of the following to _index which makes no difference:
{
"index": {
"fields": ["type"]
}
}
{
"index": {
"fields": ["name"]
}
}
{
"index": {
"fields": ["name", "type"]
}
}
If I remove the sort by name and only index the type it works fine except it's not sorted, is this a limitation with couchdbs' mango implementation or am I missing something?
Using a view and map function works fine but I'm curious what mango is/isn't doing here.
With just the type index, I think it will normally be almost as efficient unless you have many documents of each type (as it has to do the sorting stage in memory.)
But since fields are ordered, it would be necessary to do:
{
"index": {
"fields": ["type", "name"]
}
}
to have a contiguous slice of this index for each type that is already ordered by name. But the query planner may not determine that this index applies.
As an example, the current pouchdb-find (which should be similar) needs the more complicated but equivalent query:
{
selector: {type: 'typeA', name: {$gte: null} },
sort: ['type','name']
}
to choose this index and build a plan that doesn't resort to building in memory for any step.
I am doing tests with elastic search in indexing wikipedia's topics.
Below my settings.
Results I expect is to have first result matching the exact string - especially if string is made by one word only.
Instead:
Searching for "g"
curl "http://localhost:9200/my_index/_search?q=name:g&pretty=True"
returns
[Changgyeonggung, Lopadotemachoselachogaleokranioleipsanodrimhypotrimmatosilphioparaomelitokatakechymenokichlepikossyphophattoperisteralektryonoptekephalliokigklopeleiolagoiosiraiobaphetraganopterygon, ..] as first results (yes, serendipity time! that is a greek dish if you are curious [http://nifty.works/about/BgdKMmwV6B3r4pXJ/] :)
I thought because the results weight more "G" letters respect to other words.. but:
Searching for "google":
curl "http://localhost:9200/my_index/_search?q=name:google&pretty=True"
returns
[Googlewhack, IGoogle, Google+, Google, ..] as first results, and I would expect Google to be the first.
What is wrong in my settings for not hitting exact keyword if exists?
I used index and search analyzers for the reason suggested in this answer:[https://stackoverflow.com/a/15932838/305883]
Settings
# make index with mapping
curl -X PUT localhost:9200/test-ngram -d '
{
"settings": {
"analysis": {
"analyzer": {
"index_analyzer": {
"type" : "custom",
"tokenizer": "lowercase",
"filter": ["asciifolding", "title_ngram"]
},
"search_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["standard", "lowercase", "stop", "asciifolding"]
}
},
"filter": {
"title_ngram" : {
"type" : "nGram",
"min_gram" : 1,
"max_gram" : 10
}
}
}
},
"mappings": {
"topic": {
"properties": {
"name": {
"type": "string",
"boost": 10.0,
"index": "analyzed",
"index_analyzer": "index_analyzer",
"search_analyzer": "search_analyzer"
}
}
}
}
}
'
That's because relevance works in a different way by default (check the part about TF/IDF
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html)
If you want to have exact term match on the top of the results while also matching substrings etc, you need to index name as multifield like this:
"name": {
"type": "string",
"index": "analyzed",
// other analyzer stuff here
"fields": {
"raw": { "type": "string", "index": "not_analyzed" }
}
}
Then in the boolean query you need to query both name and name.raw and boost results from name.raw
In the elasticsearch module I have built, is it possible to return the "input search term" in the search results ?
For example :
GET /signals/_search
{
"query": {
"match": {
"focused_content": "stock"
}
}
}
This returns
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.057534903,
"hits": [
{
"_index": "signals",
"_type": "signal",
"_id": "13",
"_score": 0.057534903,
"_source": {
"username": "abc#abc.com",
"tags": [
"News"
],
"content_url": "http://www.wallstreetscope.com/morning-stock-highlights-western-digital-corporation-wdc-fibria-celulose-sa-fbr-ametek-inc-ame-cott-corporation-cot-graftech-international-ltd-gti/25375462/",
"source": null,
"focused_content": "Morning Stock Highlights: Western Digital Corporation (WDC), Fibria Celulose SA (FBR), Ametek Inc. (AME), Cott Corporation (COT), GrafTech International Ltd. (GTI) - WallStreet Scope",
"time_stamp": "2015-08-12"
}
}
]
}
Is it possible to have the input search term "stock" along with each of the results (like an additional JSON Key along with "content_url","source","focused_content","time_stamp") to identify which search term had brought that result ?
Thanks in Advance !
All I can think of, would be using highlighting feature. So it would bring back additional key _highlightand it would highlight things, that matched.
It won't bring exact matching terms, tho. You'd have to deal with them in your application. You could use pre/post tags functionality to wrap them up somehow specially, so your app could recognize that it was a match.
You can use highlights on all fields, like #Evaldas suggested. This will return the result along with the value in the field which matched, surrounded by customisable tags (default is <em>).
GET /signals/_search
{
"highlight": {
"fields": {
"username": {},
"tags": {},
"source": {},
"focused_content": {},
"time_stamp": {}
}
},
"query": {
"match": {
"focused_content": "stock"
}
}
}
I am using Elasticsearch with a EdgeNGram filter which is set as follows:
"edgeNGram": {
"type": "edgeNGram",
"min_gram": 3,
"max_gram": 15,
},
The problem is that when I make a query using very short words, they are completely omitted from the search. Let's say I type in "Vitamin C" -> this gives me results for the first term "Vitamin" only. Is there any way how to tell Elasticsearch not to use EdgeNGram filter when indexing words up to 3 characters?
Thank you.
EDIT:
These are my settings:
ELASTICSEARCH_INDEX_SETTINGS = {
"settings": {
"analysis": {
"analyzer": {
"sk_hunspell": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"sk_lowercase", "sk_SK", "stopwords_SK",
"edgeNGram", "asciifolding",
"remove_duplicities",
]
},
},
"filter": {
"sk_SK": {
"type": "hunspell",
"locale": "sk_SK",
"dedup": True,
"recursion_level": 0,
"ignore_case": True,
},
"sk_lowercase": {
"type": "lowercase",
},
"stopwords_SK": {
"type": "stop",
"stopwords": STOPWORDS_SK,
},
"remove_duplicities": {
"type": "unique",
"only_on_same_position": True
},
"edgeNGram": {
"type": "edgeNGram",
"min_gram": 3,
"max_gram": 15,
"token_chars": ["letter", "digit"],
},
},
}
}
}
In the database I store information about vitamins, minerals and medicinal plants. (Their use, collecting, blooming, health benefits etc.) The information are written in Slovak. (The names of the plants and minerals are also stored in Czech and Latin).
This idea may be a hack but you could pad words less than 3 with a special charecter before inserting them into the index so they are length 3.
When you accept the user's query you would have to also pad their words less than three with the same special charecter.
You would need to create a custom tokenizer for this.
How do I search for all unique values of a given field with Elasticsearch?
I have such a kind of query like select full_name from authors, so I can display the list to the users on a form.
You could make a terms facet on your 'full_name' field. But in order to do that properly you need to make sure you're not tokenizing it while indexing, otherwise every entry in the facet will be a different term that is part of the field content. You most likely need to configure it as 'not_analyzed' in your mapping. If you are also searching on it and you still want to tokenize it you can just index it in two different ways using multi field.
You also need to take into account that depending on the number of unique terms that are part of the full_name field, this operation can be expensive and require quite some memory.
For Elasticsearch 1.0 and later, you can leverage terms aggregation to do this,
query DSL:
{
"aggs": {
"NAME": {
"terms": {
"field": "",
"size": 10
}
}
}
}
A real example:
{
"aggs": {
"full_name": {
"terms": {
"field": "authors",
"size": 0
}
}
}
}
Then you can get all unique values of authors field.
size=0 means not limit the number of terms(this requires es to be 1.1.0 or later).
Response:
{
...
"aggregations" : {
"full_name" : {
"buckets" : [
{
"key" : "Ken",
"doc_count" : 10
},
{
"key" : "Jim Gray",
"doc_count" : 10
},
]
}
}
}
see Elasticsearch terms aggregations.
Intuition:
In SQL parlance:
Select distinct full_name from authors;
is equivalent to
Select full_name from authors group by full_name;
So, we can use the grouping/aggregate syntax in ElasticSearch to find distinct entries.
Assume the following is the structure stored in elastic search :
[{
"author": "Brian Kernighan"
},
{
"author": "Charles Dickens"
}]
What did not work: Plain aggregation
{
"aggs": {
"full_name": {
"terms": {
"field": "author"
}
}
}
}
I got the following error:
{
"error": {
"root_cause": [
{
"reason": "Fielddata is disabled on text fields by default...",
"type": "illegal_argument_exception"
}
]
}
}
What worked like a charm: Appending .keyword with the field
{
"aggs": {
"full_name": {
"terms": {
"field": "author.keyword"
}
}
}
}
And the sample output could be:
{
"aggregations": {
"full_name": {
"buckets": [
{
"doc_count": 372,
"key": "Charles Dickens"
},
{
"doc_count": 283,
"key": "Brian Kernighan"
}
],
"doc_count": 1000
}
}
}
Bonus tip:
Let us assume the field in question is nested as follows:
[{
"authors": [{
"details": [{
"name": "Brian Kernighan"
}]
}]
},
{
"authors": [{
"details": [{
"name": "Charles Dickens"
}]
}]
}
]
Now the correct query becomes:
{
"aggregations": {
"full_name": {
"aggregations": {
"author_details": {
"terms": {
"field": "authors.details.name"
}
}
},
"nested": {
"path": "authors.details"
}
}
},
"size": 0
}
Working for Elasticsearch 5.2.2
curl -XGET http://localhost:9200/articles/_search?pretty -d '
{
"aggs" : {
"whatever" : {
"terms" : { "field" : "yourfield", "size":10000 }
}
},
"size" : 0
}'
The "size":10000 means get (at most) 10000 unique values. Without this, if you have more than 10 unique values, only 10 values are returned.
The "size":0 means that in result, "hits" will contain no documents. By default, 10 documents are returned, which we don't need.
Reference: bucket terms aggregation
Also note, according to this page, facets have been replaced by aggregations in Elasticsearch 1.0, which are a superset of facets.
The existing answers did not work for me in Elasticsearch 5.X, for the following reasons:
I needed to tokenize my input while indexing.
"size": 0 failed to parse because "[size] must be greater than 0."
"Fielddata is disabled on text fields by default." This means by default you cannot search on the full_name field. However, an unanalyzed keyword field can be used for aggregations.
Solution 1: use the Scroll API. It works by keeping a search context and making multiple requests, each time returning subsequent batches of results. If you are using Python, the elasticsearch module has the scan() helper function to handle scrolling for you and return all results.
Solution 2: use the Search After API. It is similar to Scroll, but provides a live cursor instead of keeping a search context. Thus it is more efficient for real-time requests.