I want to know about the multi thread with future on Scala - multithreading

I know multi thread with future a little such as :
for(i <- 1 to 5) yield future {
println(i)
}
but this is all the threads do same work.
So, i want to know how to make two threads which do different work concurrently.
Also, I want to know is there any method to know all the thread is complete?
Please, give me something simple.

First of all, chances are you might be happy with parallel collections, especially if all you need is to crunch some data in parallel using multiple threads:
val lines = Seq("foo", "bar", "baz")
lines.par.map(line => line.length)
While parallel collections suitable for finite datasets, Futures are more oriented towards events-like processing and in fact, future defines task, abstracting away from execution details (one thread, multiple threads, how particular task is pinned to thread) -- all of this is controlled with execution context. What you can do with futures though is to add callback (on success, on failure, on both), compose it with another future or await for result. All this concepts are nicely explained in official doc which is worthwhile reading.

Related

How to control multi-threads synchronization in Perl

I got array with [a-z,A-Z] ASCII numbers like so: my #alphabet = (65..90,97..122);
So main thread functionality is checking each character from alphabet and return string if condition is true.
Simple example :
my #output = ();
for my $ascii(#alphabet){
thread->new(\sub{ return chr($ascii); });
}
I want to run thread on every ASCII number, then put letter from thread function into array in the correct order.
So in out case array #output should be dynamic and contain [a..z,A-Z] after all threads finish their job.
How to check, is all threads is done and keep the order?
You're looking for $thread->join, which waits for a thread to finish. It's documented here, and this SO question may also help.
Since in your case it looks like the work being done in the threads is roughly equal in cost (no thread is going to take a long time more than any other), you can just join each thread in order, like so, to wait for them all to finish:
# Store all the threads for each letter in an array.
my #threads = map { thread->new(\sub{ return chr($_); }) } #alphabet;
my #results = map { $_->join } #threads;
Since, when the first thread returns from join, the others are likely already done and just waiting for "join" to grab their return code, or about to be done, this gets you pretty close to "as fast as possible" parallelism-wise, and, since the threads were created in order, #results is ordered already for free.
Now, if your threads can take variable amounts of time to finish, or if you need to do some time-consuming processing in the "main"/spawning thread before plugging child threads' results into the output data structure, joining them in order might not be so good. In that case, you'll need to somehow either: a) detect thread "exit" events as they happen, or b) poll to see which threads have exited.
You can detect thread "exit" events using signals/notifications sent from the child threads to the main/spawning thread. The easiest/most common way to do that is to use the cond_wait and cond_signal functions from threads::shared. Your main thread would wait for signals from child threads, process their output, and store it into the result array. If you take this approach, you should preallocate your result array to the right size, and provide the output index to your threads (e.g. use a C-style for loop when you create your threads and have them return ($result, $index_to_store) or similar) so you can store results in the right place even if they are out of order.
You can poll which threads are done using the is_joinable thread instance method, or using the threads->list(threads::joinable) and threads->list(threads::running) methods in a loop (hopefully not a busy-waiting one; adding a sleep call--even a subsecond one from Time::HiRes--will save a lot of performance/battery in this case) to detect when things are done and grab their results.
Important Caveat: spawning a huge number of threads to perform a lot of work in parallel, especially if that work is small/quick to complete, can cause performance problems, and it might be better to use a smaller number of threads that each do more than one "piece" of work (e.g. spawn a small number of threads, and each thread uses the threads::shared functions to lock and pop the first item off of a shared array of "work to do" and do it rather than map work to threads as 1:1). There are two main performance problems that arise from a 1:1 mapping:
the overhead (in memory and time) of spawning and joining each thread is much higher than you'd think (benchmark it on threads that don't do anything, just return, to see). If the work you need to do is fast, the overhead of thread management for tons of threads can make it much slower than just managing a few re-usable threads.
If you end up with a lot more threads than there are logical CPU cores and each thread is doing CPU-intensive work, or if each thread is accessing the same resource (e.g. reading from the same disks or the same rows in a database), you hit a performance cliff pretty quickly. Tuning the number of threads to the "resources" underneath (whether those are CPUs or hard drives or whatnot) tends to yield much better throughput than trusting the thread scheduler to switch between many more threads than there are available resources to run them on. The reasons this is slow are, very broadly:
Because the thread scheduler (part of the OS, not the language) can't know enough about what each thread is trying to do, so preemptive scheduling cannot optimize for performance past a certain point, given that limited knowledge.
The OS usually tries to give most threads a reasonably fair shot, so it can't reliably say "let one run to completion and then run the next one" unless you explicitly bake that into the code (since the alternative would be unpredictably starving certain threads for opportunities to run). Basically, switching between "run a slice of thread 1 on resource X" and "run a slice of thread 2 on resource X" doesn't get you anything once you have more threads than resources, and adds some overhead as well.
TL;DR threads don't give you performance increases past a certain point, and after that point they can make performance worse. When you can, reuse a number of threads corresponding to available resources; don't create/destroy individual threads corresponding to tasks that need to be done.
Building on Zac B's answer, you can use the following if you want to reuse threads:
use strict;
use warnings;
use Thread::Pool::Simple qw( );
$| = 1;
my $pool = Thread::Pool::Simple->new(
do => [ sub {
select(undef, undef, undef, (200+int(rand(8))*100)/1000);
return chr($_[0]);
} ],
);
my #alphabet = ( 65..90, 97..122 );
print $pool->remove($_) for map { $pool->add($_) } #alphabet;
print "\n";
The results are returned in order, as soon as they become available.
I'm the author of Parallel::WorkUnit so I'm partial to it. And I thought adding ordered responses was actually a great idea. It does it with forks, not threads, because forks are more widely supported and they often perform better in Perl.
my $wu = Parallel::WorkUnit->new();
for my $ascii(#alphabet){
$wu->async(sub{ return chr($ascii); });
}
#output = $wu->waitall();
If you want to limit the number of simultaneous processes:
my $wu = Parallel::WorkUnit->new(max_children => 5);
for my $ascii(#alphabet){
$wu->queue(sub{ return chr($ascii); });
}
#output = $wu->waitall();

Does RxJava Parallelization Break the Observable Contract?

Ben Christensen posted here that the best way to currently achieve parallelism in RxJava is to create another Observable and subscribe it on a scheduler as shown below.
streamOfItems.flatMap(item -> {
doStuffWithItem(item).subscribeOn(Schedulers.io());
});
However, the Observable Contract says that an onNext() call may be called any number of times, as long as the calls do not overlap. Well, any operators in the rest of the chain following the one above could now easily break that rule (unless they explicitly do some sort of synchronization/serialization).
My impression is RxJava prefers to keep a stream of emissions on one thread at a time and switching a steady sequential stream from one thread to another at specific operators, but never in parallel (as depicted below).
observeOn() thread -------------------------Y----Y----Y-------------
subscribeOn() thread ----X----X----X----X-----------------------------
With a parallel approach, I understand the chart may look something like this and that looks pretty overlapped to me.
par subscribeOn() thread 3 -------------------------Y-----Y---------------
par subscribeOn() thread 2 ---------------------------Y---Y---------------
par subscribeOn() thread 1 -------------------------Y-------------Y-------
initial subscribeOn() thread ----X----X----X----X---------------------------
Did I misunderstand anything or make broad assumptions? Is parallelism not breaking the Observable contract? Does that make it not preferable in some way?
If you are using standard operators, nothing will break the Observable contract because whenever concurrency may happen, the operators serialize their output. In your example, flatMap does this so its output is guaranteed to be sequential (although the the reception thread may switch back and forth).
This is, however, not generally true for different stages of the same pipeline if those are separated by an asynchronous boundary or an operator that may do thread arbitration.

Scala - best API for doing work inside multiple threads

In Python, I am using a library called futures, which allows me to do my processing work with a pool of N worker processes, in a succinct and crystal-clear way:
schedulerQ = []
for ... in ...:
workParam = ... # arguments for call to processingFunction(workParam)
schedulerQ.append(workParam)
with futures.ProcessPoolExecutor(max_workers=5) as executor: # 5 CPUs
for retValue in executor.map(processingFunction, schedulerQ):
print "Received result", retValue
(The processingFunction is CPU bound, so there is no point for async machinery here - this is about plain old arithmetic calculations)
I am now looking for the closest possible way to do the same thing in Scala. Notice that in Python, to avoid the GIL issues, I was using processes (hence the use of ProcessPoolExecutor instead of ThreadPoolExecutor) - and the library automagically marshals the workParam argument to each process instance executing processingFunction(workParam) - and it marshals the result back to the main process, for the executor's map loop to consume.
Does this apply to Scala and the JVM? My processingFunction can, in principle, be executed from threads too (there's no global state at all) - but I'd be interested to see solutions for both multiprocessing and multithreading.
The key part of the question is whether there is anything in the world of the JVM with as clear an API as the Python futures you see above... I think this is one of the best SMP APIs I've ever seen - prepare a list with the function arguments of all invocations, and then just two lines: create the poolExecutor, and map the processing function, getting back your results as soon as they are produced by the workers. Results start coming in as soon as the first invocation of processingFunction returns and keep coming until they are all done - at which point the for loop ends.
You have way less boilerplate than that using parallel collections in Scala.
myParameters.par.map(x => f(x))
will do the trick if you want the default number of threads (same as number of cores).
If you insist on setting the number of workers, you can like so:
import scala.collection.parallel._
import scala.concurrent.forkjoin._
val temp = myParameters.par
temp.tasksupport = new ForkJoinTaskSupport(new ForkJoinPool(5))
temp.map(x => f(x))
The exact details of return timing are different, but you can put as much machinery as you want into f(x) (i.e. both compute and do something with the result), so this may satisfy your needs.
In general, simply having the results appear as completed is not enough; you then need to process them, maybe fork them, collect them, etc.. If you want to do this in general, Akka Streams (follow links from here) are nearing 1.0 and will facilitate the production of complex graphs of parallel processing.
There is both a Futures api that allows you to run work-units on a thread pool (docs: http://docs.scala-lang.org/overviews/core/futures.html) and a "parallell collections api" that you can use to perform parallell operations on collections: http://docs.scala-lang.org/overviews/parallel-collections/overview.html

What multithreading package for Lua "just works" as shipped?

Coding in Lua, I have a triply nested loop that goes through 6000 iterations. All 6000 iterations are independent and can easily be parallelized. What threads package for Lua compiles out of the box and gets decent parallel speedups on four or more cores?
Here's what I know so far:
luaproc comes from the core Lua team, but the software bundle on luaforge is old, and the mailing list has reports of it segfaulting. Also, it's not obvious to me how to use the scalar message-passing model to get results ultimately into a parent thread.
Lua Lanes makes interesting claims but seems to be a heavyweight, complex solution. Many messages on the mailing list report trouble getting Lua Lanes to build or work for them. I myself have had trouble getting the underlying "Lua rocks" distribution mechanism to work for me.
LuaThread requires explicit locking and requires that communication between threads be mediated by global variables that are protected by locks. I could imagine worse, but I'd be happier with a higher level of abstraction.
Concurrent Lua provides an attractive message-passing model similar to Erlang, but it says that processes do not share memory. It is not clear whether spawn actually works with any Lua function or whether there are restrictions.
Russ Cox proposed an occasional threading model that works only for C threads. Not useful for me.
I will upvote all answers that report on actual experience with these or any other multithreading package, or any answer that provides new information.
For reference, here is the loop I would like to parallelize:
for tid, tests in pairs(tests) do
local results = { }
matrix[tid] = results
for i, test in pairs(tests) do
if test.valid then
results[i] = { }
local results = results[i]
for sid, bin in pairs(binaries) do
local outcome, witness = run_test(test, bin)
results[sid] = { outcome = outcome, witness = witness }
end
end
end
end
The run_test function is passed in as an argument, so a package can be useful to me only if it can run arbitrary functions in parallel. My goal is enough parallelism to get 100% CPU utilization on 6 to 8 cores.
Norman wrote concerning luaproc:
"it's not obvious to me how to use the scalar message-passing model to get results ultimately into a parent thread"
I had the same problem with a use case I was dealing with. I liked lua proc due to its simple and light implementation, but my use case had C code that was calling lua, which was triggering a co-routine that needed to send/receive messages to interact with other luaproc threads.
To achieve my desired functionality I had to add features to luaproc to allow sending and receiving messages from the parent thread or any other thread not running from the luaproc scheduler. Additionally, my changes allow using luaproc send/receive from coroutines created from luaproc.newproc() created lua states.
I added an additional luaproc.addproc() function to the api which is to be called from any lua state running from a context not controlled by the luaproc scheduler in order to set itself up with luaproc for sending/receiving messages.
I am considering posting the source as a new github project or contacting the developers and seeing if they would like to pull my additions. Suggestions as to how I should make it available to others are welcome.
Check the threads library in torch family. It implements a thread pool model: a few true threads (pthread in linux and windows thread in win32) are created first. Each thread has a lua_State object and a blocking job queue that admits jobs added from the main thread.
Lua objects are copied over from main thread to the job thread. However C objects such as Torch tensors or tds data structures can be passed to job threads via pointers -- this is how limited shared memory is achieved.
This is a perfect example of MapReduce
You can use LuaRings to accomplish your parallelization needs.
Concurrent Lua might seem like the way to go, but as I note in my updates below, it doesn't run things in parallel. The approach I tried was to spawn several processes that execute pickled closures received through the message queue.
Update
Concurrent Lua seems to handle first-class functions and closures without a hitch. See the following example program.
require 'concurrent'
local NUM_WORKERS = 4 -- number of worker threads to use
local NUM_WORKITEMS = 100 -- number of work items for processing
-- calls the received function in the local thread context
function worker(pid)
while true do
-- request new work
concurrent.send(pid, { pid = concurrent.self() })
local msg = concurrent.receive()
-- exit when instructed
if msg.exit then return end
-- otherwise, run the provided function
msg.work()
end
end
-- creates workers, produces all the work and performs shutdown
function tasker()
local pid = concurrent.self()
-- create the worker threads
for i = 1, NUM_WORKERS do concurrent.spawn(worker, pid) end
-- provide work to threads as requests are received
for i = 1, NUM_WORKITEMS do
local msg = concurrent.receive()
-- send the work as a closure
concurrent.send(msg.pid, { work = function() print(i) end, pid = pid })
end
-- shutdown the threads as they complete
for i = 1, NUM_WORKERS do
local msg = concurrent.receive()
concurrent.send(msg.pid, { exit = true })
end
end
-- create the task process
local pid = concurrent.spawn(tasker)
-- run the event loop until all threads terminate
concurrent.loop()
Update 2
Scratch all of that stuff above. Something didn't look right when I was testing this. It turns out that Concurrent Lua isn't concurrent at all. The "processes" are implemented with coroutines and all run cooperatively in the same thread context. That's what we get for not reading carefully!
So, at least I eliminated one of the options I guess. :(
I realize that this is not a works-out-of-the-box solution, but, maybe go old-school and play with forks? (Assuming you're on a POSIX system.)
What I would have done:
Right before your loop, put all tests in a queue, accessible between processes. (A file, a Redis LIST or anything else you like most.)
Also before the loop, spawn several forks with lua-posix (same as the number of cores or even more depending on the nature of tests). In parent fork wait until all children will quit.
In each fork in a loop, get a test from the queue, execute it, put results somewhere. (To a file, to a Redis LIST, anywhere else you like.) If there are no more tests in queue, quit.
In the parent fetch and process all test results as you do now.
This assumes that test parameters and results are serializable. But even if they are not, I think that it should be rather easy to cheat around that.
I've now built a parallel application using luaproc. Here are some misconceptions that kept me from adopting it sooner, and how to work around them.
Once the parallel threads are launched, as far as I can tell there is no way for them to communicate back to the parent. This property was the big block for me. Eventually I realized the way forward: when it's done forking threads, the parent stops and waits. The job that would have been done by the parent should instead be done by a child thread, which should be dedicated to that job. Not a great model, but it works.
Communication between parent and children is very limited. The parent can communicate only scalar values: strings, Booleans, and numbers. If the parent wants to communicate more complex values, like tables and functions, it must code them as strings. Such coding can take place inline in the program, or (especially) functions can be parked into the filesystem and loaded into the child using require.
The children inherit nothing of the parent's environment. In particular, they don't inherit package.path or package.cpath. I had to work around this by the way I wrote the code for the children.
The most convenient way to communicate from parent to child is to define the child as a function, and to have the child capture parental information in its free variables, known in Lua parlances as "upvalues." These free variables may not be global variables, and they must be scalars. Still, it's a decent model. Here's an example:
local function spawner(N, workers)
return function()
local luaproc = require 'luaproc'
for i = 1, N do
luaproc.send('source', i)
end
for i = 1, workers do
luaproc.send('source', nil)
end
end
end
This code is used as, e.g.,
assert(luaproc.newproc(spawner(randoms, workers)))
This call is how values randoms and workers are communicated from parent to child.
The assertion is essential here, as if you forget the rules and accidentally capture a table or a local function, luaproc.newproc will fail.
Once I understood these properties, luaproc did indeed work "out of the box", when downloaded from askyrme on github.
ETA: There is an annoying limitation: in some circumstances, calling fread() in one thread can prevent other threads from being scheduled. In particular, if I run the sequence
local file = io.popen(command, 'r')
local result = file:read '*a'
file:close()
return result
the read operation blocks all other threads. I don't know why this is---I assume it is some nonsense going on within glibc. The workaround I used was to call directly to read(2), which required a little glue code, but this works properly with io.popen and file:close().
There's one other limitation worth noting:
Unlike Tony Hoare's original conception of communicating sequential processing, and unlike most mature, serious implementations of synchronous message passing, luaproc does not allow a receiver to block on multiple channels simultaneously. This limitation is serious, and it rules out many of the design patterns that synchronous message-passing is good at, but it's still find for many simple models of parallelism, especially the "parbegin" sort that I needed to solve for my original problem.

multithreading: how to process data in a vector, while the vector is being populated?

I have a single-threaded linux app which I would like to make parallel. It reads a data file, creates objects, and places them in a vector. Then it calls a compute-intensive method (.5 second+) on each object. I want to call the method in parallel with object creation. While I've looked at qt and tbb, I am open to other options.
I planned to start the thread(s) while the vector was empty. Each one would call makeSolids (below), which has a while loop that would run until interpDone==true and all objects in the vector have been processed. However, I'm a n00b when it comes to threading, and I've been looking for a ready-made solution.
QtConcurrent::map(Iter begin,Iter end,function()) looks very easy, but I can't use it on a vector that's changing in size, can I? And how would I tell it to wait for more data?
I also looked at intel's tbb, but it looked like my main thread would halt if I used parallel_for or parallel_while. That stinks, since their memory manager was recommended (open cascade's mmgt has poor performance when multithreaded).
/**intended to be called by a thread
\param start the first item to get from the vector
\param skip how many to skip over (4 for 4 threads)
*/
void g2m::makeSolids(uint start, uint incr) {
uint curr = start;
while ((!interpDone) || (lineVector.size() > curr)) {
if (lineVector.size() > curr) {
if (lineVector[curr]->isMotion()) {
((canonMotion*)lineVector[curr])->setSolidMode(SWEPT);
((canonMotion*)lineVector[curr])->computeSolid();
}
lineVector[curr]->setDispMode(BEST);
lineVector[curr]->display();
curr += incr;
} else {
uio::sleep(); //wait a little bit for interp
}
}
}
EDIT: To summarize, what's the simplest way to process a vector at the same time that the main thread is populating the vector?
Firstly, to benefit from threading you need to find similarly slow tasks for each thread to do. You said your per-object processing takes .5s+, how long does your file reading / object creation take? It could easily be a tenth or a thousandth of that time, in which case your multithreading approach is going to produce neglegible benefit. If that's the case, (yes, I'll answer your original question soon incase it's not) then think about simultaneously processing multiple objects. Given your processing takes quite a while, the thread creation overhead isn't terribly significant, so you could simply have your main file reading/object creation thread spawn a new thread and direct it at the newly created object. The main thread then continues reading/creating subsequent objects. Once all objects are read/created, and all the processing threads launched, the main thread "joins" (waits for) the worker threads. If this will create too many threads (thousands), then put a limit on how far ahead the main thread is allowed to get: it might read/create 10 objects then join 5, then read/create 10, join 10, read/create 10, join 10 etc. until finished.
Now, if you really want the read/create to be in parallel with the processing, but the processing to be serialised, then you can still use the above approach but join after each object. That's kind of weird if you're designing this with only this approach in mind, but good because you can easily experiment with the object processing parallelism above as well.
Alternatively, you can use a more complex approach that just involves the main thread (that the OS creates when your program starts), and a single worker thread that the main thread must start. They should be coordinated using a mutex (a variable ensuring mutually-exclusive, which means not-concurrent, access to data), and a condition variable which allows the worker thread to efficiently block until the main thread has provided more work. The terms - mutex and condition variable - are the standard terms in the POSIX threading that Linux uses, so should be used in the explanation of the particular libraries you're interested in. Summarily, the worker thread waits until the main read/create thread broadcasts it a wake-up signal indicating another object is ready for processing. You may want to have a counter with index of the last fully created, ready-for-processing object, so the worker thread can maintain it's count of processed objects and move along the ready ones before once again checking the condition variable.
It's hard to tell if you have been thinking about this problem deeply and there is more than you are letting on, or if you are just over thinking it, or if you are just wary of threading.
Reading the file and creating the objects is fast; the one method is slow. The dependency is each consecutive ctor depends on the outcome of the previous ctor - a little odd - but otherwise there are no data integrity issues so there doesn't seem to be anything that needs to be protected by mutexes and such.
Why is this more complicated than something like this (in crude pseudo-code):
while (! eof)
{
readfile;
object O(data);
push_back(O);
pthread_create(...., O, makeSolid);
}
while(x < vector.size())
{
pthread_join();
x++;
}
If you don't want to loop on the joins in your main then spawn off a thread to wait on them by passing a vector of TIDs.
If the number of created objects/threads is insane, use a thread pool. Or put a counter is the creation loop to limit the number of threads that can be created before running ones are joined.
#Caleb: quite -- perhaps I should have emphasized active threads. The GUI thread should always be considered one.

Resources