how to query nested array of objects in mongodb? - node.js

i am trying to query nested array of objects in mongodb from node js, tried all the solutions but no luck. can anyone please help this on priority?
I have tried following :
{
"name": "Science",
"chapters": [
{
"name": "ScienceChap1",
"tests": [
{
"name": "ScienceChap1Test1",
"id": 1,
"marks": 10,
"duration": 30,
"questions": [
{
"question": "What is the capital city of New Mexico?",
"type": "mcq",
"choice": [
"Guadalajara",
"Albuquerque",
"Santa Fe",
"Taos"
],
"answer": [
"Santa Fe",
"Taos"
]
},
{
"question": "Who is the author of beowulf?",
"type": "notmcq",
"choice": [
"Mark Twain",
"Shakespeare",
"Abraham Lincoln",
"Newton"
],
"answer": [
"Shakespeare"
]
}
]
},
{
"name": "ScienceChap1test2",
"id": 2,
"marks": 20,
"duration": 30,
"questions": [
{
"question": "What is the capital city of New Mexico?",
"type": "mcq",
"choice": [
"Guadalajara",
"Albuquerque",
"Santa Fe",
"Taos"
],
"answer": [
"Santa Fe",
"Taos"
]
},
{
"question": "Who is the author of beowulf?",
"type": "notmcq",
"choice": [
"Mark Twain",
"Shakespeare",
"Abraham Lincoln",
"Newton"
],
"answer": [
"Shakespeare"
]
}
]
}
]
}
]
}
Here is what I've tried so far but still can't get it to work
db.quiz.find({name:"Science"},{"tests":0,chapters:{$elemMatch:{name:"ScienceCh‌​ap1"}}})
db.quiz.find({ chapters: { $elemMatch: {$elemMatch: { name:"ScienceChap1Test1" } } }})
db.quiz.find({name:"Science"},{chapters:{$elemMatch:{$elemMatch:{name:"Scienc‌​eChap1Test1"}}}}) ({ name:"Science"},{ chapters: { $elemMatch: {$elemMatch: { name:"ScienceChap1Test1" } } }})

Aggregation Framework
You can use the aggregation framework to transform and combine documents in a collection to display to the client. You build a pipeline that processes a stream of documents through several building blocks: filtering, projecting, grouping, sorting, etc.
If you want get the mcq type questions from the test named "ScienceChap1Test1", you would do the following:
db.quiz.aggregate(
//Match the documents by query. Search for science course
{"$match":{"name":"Science"}},
//De-normalize the nested array of chapters.
{"$unwind":"$chapters"},
{"$unwind":"$chapters.tests"},
//Match the document with test name Science Chapter
{"$match":{"chapters.tests.name":"ScienceChap1test2"}},
//Unwind nested questions array
{"$unwind":"$chapters.tests.questions"},
//Match questions of type mcq
{"$match":{"chapters.tests.questions.type":"mcq"}}
).pretty()
The result will be:
{
"_id" : ObjectId("5629eb252e95c020d4a0c5a5"),
"name" : "Science",
"chapters" : {
"name" : "ScienceChap1",
"tests" : {
"name" : "ScienceChap1test2",
"id" : 2,
"marks" : 20,
"duration" : 30,
"questions" : {
"question" : "What is the capital city of New Mexico?",
"type" : "mcq",
"choice" : [
"Guadalajara",
"Albuquerque",
"Santa Fe",
"Taos"
],
"answer" : [
"Santa Fe",
"Taos"
]
}
}
}
}
$elemMatch doesn't work for sub documents. You can use the aggregation framework for "array filtering" by using $unwind.
You can delete each line from the bottom of each command in the aggregation pipeline in the above code to observe the pipelines behavior.

You should try the following queries in the mongodb simple javascript shell.
There could be Two Scenarios.
Scenario One
If you simply want to return the documents that contain certain chapter names or test names for example just one argument in find will do.
For the find method the document you want to be returned is specified by the first argument. You could return documents with the name Science by doing this:
db.quiz.find({name:"Science"})
You could specify criteria to match a single embedded document in an array by using $elemMatch. To find a document that has a chapter with the name ScienceChap1. You could do this:
db.quiz.find({"chapters":{"$elemMatch":{"name":"ScienceChap1"}}})
If you wanted your criteria to be a test name then you could use the dot operator like this:
db.quiz.find({"chapters.tests":{"$elemMatch":{"name":"ScienceChap1Test1"}}})
Scenario Two - Specifying Which Keys to Return
If you want to specify which keys to Return you can pass a second argument to find (or findOne) specifying the keys you want. In your case you can search for the document name and then provide which keys to return like so.
db.quiz.find({name:"Science"},{"chapters":1})
//Would return
{
"_id": ObjectId(...),
"chapters": [
"name": "ScienceChap2",
"tests: [..all object content here..]
}
If you only want to return the marks from each test object you can use the dot operator to do so:
db.quiz.find({name:"Science"},{"chapters.tests.marks":1})
//Would return
{
"_id": ObjectId(...),
"chapters": [
"tests: [
{"marks":10},
{"marks":20}
]
}
If you only want to return the questions from each test:
db.quiz.find({name:"Science"},{"chapters.tests.questions":1})
Test these out. I hope these help.

Related

MongoDb nested object selection [duplicate]

This question already has answers here:
Return only matched sub-document elements within a nested array
(3 answers)
Closed 5 years ago.
I have the multiple nested objects and lists, like below
{
"_id": "5a76be26ca96e22f08af2a19",
"testId": "123",
"testName": "summerTest",
"subjects": [
{
"subjectName": "Maths",
"testDetails": [
{
"testNumber": "0001",
"startTime": "2/18/18 13:30",
"endTime": "2/18/18 13:30",
"testDuriation": "01:00:00",
"questions": [
{...}
]
},
{
"testNumber": "0002",
"startTime": "2/18/18 13:30",
"endTime": "2/18/18 13:30",
"testDuriation": "01:00:00",
"questions": [
{...}
]
}
]
}
i want to select testNumber 0002 only. using mongoclient in my express js.
collection.find({ "testId": "123", "subjects.subjectName": "Maths", "subjects.testDetails.testNumber": "0002" }).toArray(function (err, data) {}..
But it will return entire TestId 123 document anyone help me. Thanks
Will be available
db.collection.aggregate([
{$unwind : '$subjects'},
{$project : {'_id': 0 , 'array' : '$subjects.testDetails'}},
{$unwind : '$array'},
{$match: {'array.testNumber' : '0002' }}
])
With a find you always return a whole document, so you need to add a projection to only show what you need.
By the way in your find filter there is an error, because if you want to filter only collections with a particular subjects.subjectName and subjects.testDetails.testNumber you need to use $elemMatch (https://docs.mongodb.com/manual/reference/operator/query/elemMatch/). If you don't do this it will return all document where in the subjects array there is one element with the first property and another one with the second property.

Marklogic 8 Node.js API - How can I scope a search on a property child of root?

[updated 17:15 on 28/09]
I'm manipulating json data of type:
[
{
"id": 1,
"title": "Sun",
"seeAlso": [
{
"id": 2,
"title": "Rain"
},
{
"id": 3,
"title": "Cloud"
}
]
},
{
"id": 2,
"title": "Rain",
"seeAlso": [
{
"id": 3,
"title": "Cloud"
}
]
},
{
"id": 3,
"title": "Cloud",
"seeAlso": [
{
"id": 1,
"title": "Sun"
}
]
},
];
After inclusion in the database, a node.js search using
db.documents.query(
q.where(
q.collection('test films'),
q.value('title','Sun')
).withOptions({categories: 'none'})
)
.result( function(results) {
console.log(JSON.stringify(results, null,2));
});
will return both the film titled 'Sun' and the films which have a seeAlso/title property (forgive the xpath syntax) = 'Sun'.
I need to find 1/ films with title = 'Sun' 2/ films with seeAlso/title = 'Sun'.
I tried a container query using q.scope() with no success; I don't find how to scope the root object node (first case) and for the second case,
q.where(q.scope(q.property('seeAlso'), q.value('title','Sun')))
returns as first result an item which matches all text inside the root object node
{
"index": 1,
"uri": "/1.json",
"path": "fn:doc(\"/1.json\")",
"score": 137216,
"confidence": 0.6202662,
"fitness": 0.6701325,
"href": "/v1/documents?uri=%2F1.json&database=Documents",
"mimetype": "application/json",
"format": "json",
"matches": [
{
"path": "fn:doc(\"/1.json\")/object-node()",
"match-text": [
"Sun Rain Cloud"
]
}
]
},
which seems crazy.
Any idea about how doing such searches on denormalized json data?
Laurent:
XPaths on JSON are supported by MarkLogic.
In particular, you might consider setting up a path range index to match /title at the root:
http://docs.marklogic.com/guide/admin/range_index#id_54948
Scoped property matching required either filtering or indexed positions to be accurate. An alternative is to set up another path range index on /seeAlso/title
For the match issue it would be useful to know the MarkLogic version and to see the entire query.
Hoping that helps,

How to search through data with arbitrary amount of fields?

I have the web-form builder for science events. The event moderator creates registration form with arbitrary amount of boolean, integer, enum and text fields.
Created form is used for:
register a new member to event;
search through registered members.
What is the best search tool for second task (to search memebers of event)? Is ElasticSearch well for this task?
I wrote a post about how to index arbitrary data into Elasticsearch and then to search it by specific fields and values. All this, without blowing up your index mapping.
The post is here: http://smnh.me/indexing-and-searching-arbitrary-json-data-using-elasticsearch/
In short, you will need to do the following steps to get what you want:
Create a special index described in the post.
Flatten the data you want to index using the flattenData function:
https://gist.github.com/smnh/30f96028511e1440b7b02ea559858af4.
Create a document with the original and flattened data and index it into Elasticsearch:
{
"data": { ... },
"flatData": [ ... ]
}
Optional: use Elasticsearch aggregations to find which fields and types have been indexed.
Execute queries on the flatData object to find what you need.
Example
Basing on your original question, let's assume that the first event moderator created a form with following fields to register members for the science event:
name string
age long
sex long - 0 for male, 1 for female
In addition to this data, the related event probably has some sort of id, let's call it eventId. So the final document could look like this:
{
"eventId": "2T73ZT1R463DJNWE36IA8FEN",
"name": "Bob",
"age": 22,
"sex": 0
}
Now, before we index this document, we will flatten it using the flattenData function:
flattenData(document);
This will produce the following array:
[
{
"key": "eventId",
"type": "string",
"key_type": "eventId.string",
"value_string": "2T73ZT1R463DJNWE36IA8FEN"
},
{
"key": "name",
"type": "string",
"key_type": "name.string",
"value_string": "Bob"
},
{
"key": "age",
"type": "long",
"key_type": "age.long",
"value_long": 22
},
{
"key": "sex",
"type": "long",
"key_type": "sex.long",
"value_long": 0
}
]
Then we will wrap this data in a document as I've showed before and index it.
Then, the second event moderator, creates another form having a new field, field with same name and type, and also a field with same name but with different type:
name string
city string
sex string - "male" or "female"
This event moderator decided that instead of having 0 and 1 for male and female, his form will allow choosing between two strings - "male" and "female".
Let's try to flatten the data submitted by this form:
flattenData({
"eventId": "F1BU9GGK5IX3ZWOLGCE3I5ML",
"name": "Alice",
"city": "New York",
"sex": "female"
});
This will produce the following data:
[
{
"key": "eventId",
"type": "string",
"key_type": "eventId.string",
"value_string": "F1BU9GGK5IX3ZWOLGCE3I5ML"
},
{
"key": "name",
"type": "string",
"key_type": "name.string",
"value_string": "Alice"
},
{
"key": "city",
"type": "string",
"key_type": "city.string",
"value_string": "New York"
},
{
"key": "sex",
"type": "string",
"key_type": "sex.string",
"value_string": "female"
}
]
Then, after wrapping the flattened data in a document and indexing it into Elasticsearch we can execute complicated queries.
For example, to find members named "Bob" registered for the event with ID 2T73ZT1R463DJNWE36IA8FEN we can execute the following query:
{
"query": {
"bool": {
"must": [
{
"nested": {
"path": "flatData",
"query": {
"bool": {
"must": [
{"term": {"flatData.key": "eventId"}},
{"match": {"flatData.value_string.keyword": "2T73ZT1R463DJNWE36IA8FEN"}}
]
}
}
}
},
{
"nested": {
"path": "flatData",
"query": {
"bool": {
"must": [
{"term": {"flatData.key": "name"}},
{"match": {"flatData.value_string": "bob"}}
]
}
}
}
}
]
}
}
}
ElasticSearch automatically detects the field content in order to index it correctly, even if the mapping hasn't been defined previously. So, yes : ElasticSearch suits well these cases.
However, you may want to fine tune this behavior, or maybe the default mapping applied by ElasticSearch doesn't correspond to what you need : in this case, take a look at the default mapping or, for even further control, the dynamic templates feature.
If you let your end users decide the keys you store things in, you'll have an ever-growing mapping and cluster state, which is problematic.
This case and a suggested solution is covered in this article on common problems with Elasticsearch.
Essentially, you want to have everything that can possibly be user-defined as a value. Using nested documents, you can have a key-field and differently mapped value fields to achieve pretty much the same.

Query all unique values of a field with Elasticsearch

How do I search for all unique values of a given field with Elasticsearch?
I have such a kind of query like select full_name from authors, so I can display the list to the users on a form.
You could make a terms facet on your 'full_name' field. But in order to do that properly you need to make sure you're not tokenizing it while indexing, otherwise every entry in the facet will be a different term that is part of the field content. You most likely need to configure it as 'not_analyzed' in your mapping. If you are also searching on it and you still want to tokenize it you can just index it in two different ways using multi field.
You also need to take into account that depending on the number of unique terms that are part of the full_name field, this operation can be expensive and require quite some memory.
For Elasticsearch 1.0 and later, you can leverage terms aggregation to do this,
query DSL:
{
"aggs": {
"NAME": {
"terms": {
"field": "",
"size": 10
}
}
}
}
A real example:
{
"aggs": {
"full_name": {
"terms": {
"field": "authors",
"size": 0
}
}
}
}
Then you can get all unique values of authors field.
size=0 means not limit the number of terms(this requires es to be 1.1.0 or later).
Response:
{
...
"aggregations" : {
"full_name" : {
"buckets" : [
{
"key" : "Ken",
"doc_count" : 10
},
{
"key" : "Jim Gray",
"doc_count" : 10
},
]
}
}
}
see Elasticsearch terms aggregations.
Intuition:
In SQL parlance:
Select distinct full_name from authors;
is equivalent to
Select full_name from authors group by full_name;
So, we can use the grouping/aggregate syntax in ElasticSearch to find distinct entries.
Assume the following is the structure stored in elastic search :
[{
"author": "Brian Kernighan"
},
{
"author": "Charles Dickens"
}]
What did not work: Plain aggregation
{
"aggs": {
"full_name": {
"terms": {
"field": "author"
}
}
}
}
I got the following error:
{
"error": {
"root_cause": [
{
"reason": "Fielddata is disabled on text fields by default...",
"type": "illegal_argument_exception"
}
]
}
}
What worked like a charm: Appending .keyword with the field
{
"aggs": {
"full_name": {
"terms": {
"field": "author.keyword"
}
}
}
}
And the sample output could be:
{
"aggregations": {
"full_name": {
"buckets": [
{
"doc_count": 372,
"key": "Charles Dickens"
},
{
"doc_count": 283,
"key": "Brian Kernighan"
}
],
"doc_count": 1000
}
}
}
Bonus tip:
Let us assume the field in question is nested as follows:
[{
"authors": [{
"details": [{
"name": "Brian Kernighan"
}]
}]
},
{
"authors": [{
"details": [{
"name": "Charles Dickens"
}]
}]
}
]
Now the correct query becomes:
{
"aggregations": {
"full_name": {
"aggregations": {
"author_details": {
"terms": {
"field": "authors.details.name"
}
}
},
"nested": {
"path": "authors.details"
}
}
},
"size": 0
}
Working for Elasticsearch 5.2.2
curl -XGET http://localhost:9200/articles/_search?pretty -d '
{
"aggs" : {
"whatever" : {
"terms" : { "field" : "yourfield", "size":10000 }
}
},
"size" : 0
}'
The "size":10000 means get (at most) 10000 unique values. Without this, if you have more than 10 unique values, only 10 values are returned.
The "size":0 means that in result, "hits" will contain no documents. By default, 10 documents are returned, which we don't need.
Reference: bucket terms aggregation
Also note, according to this page, facets have been replaced by aggregations in Elasticsearch 1.0, which are a superset of facets.
The existing answers did not work for me in Elasticsearch 5.X, for the following reasons:
I needed to tokenize my input while indexing.
"size": 0 failed to parse because "[size] must be greater than 0."
"Fielddata is disabled on text fields by default." This means by default you cannot search on the full_name field. However, an unanalyzed keyword field can be used for aggregations.
Solution 1: use the Scroll API. It works by keeping a search context and making multiple requests, each time returning subsequent batches of results. If you are using Python, the elasticsearch module has the scan() helper function to handle scrolling for you and return all results.
Solution 2: use the Search After API. It is similar to Scroll, but provides a live cursor instead of keeping a search context. Thus it is more efficient for real-time requests.

Add element to grandchild collection in MongoDb

I have a MongoDb document like this
"schools":
[
"name" : "University",
"classes" :
[
{
"name":"Chem",
"teachers":
[
"Joe",
"Bill"
]
},
{
"name":"Math",
"teachers":
[
"Julie",
"Phil"
]
},
],
// More schools/classes/teachers here
]
How do I add a new teacher to the Math class?
(I'm writing this in node.js)
For the specific case you listed, you can do it like this:
myDocument.schools[0].classes[1].teachers.push("A new teacher");
myDocument.save();
For general cases (eg, add teacher to a class named "xyz"), you'd have to loop through the appropriate array(s) to find the item you're looking for.

Resources