Gnuplot for loop with increment smaller then 1 - gnuplot

I was trying to plot the following
plot for [h=0:2:0.1] sin(h*x)
But it gives the following error
gnuplot> plot for [h=0:2:0.1] sin(x*h)
^
Expecting iterator for [<var> = <start> : <end> {: <incr>}]
or for [<var> in "string of words"]
But the following line works just fine
plot for [h=0:2:1.1] sin(x*h)
Is this a bug or it is supposed to work this way? I mean, why it is not accepting increments smaller than 1?
I'm using the following version of gnuplot
G N U P L O T
Version 5.0 patchlevel 1 last modified 2015-06-07

Gnuplot supports iterations only with integer values (see documentation section "For loops in plot command", p 98). Values smaller then 1 are casted as integer to 0, which is not allowed. Using e.g.
plot for [h=0:3:1.5] sin(x*h) title sprintf('%.1f', h)
plots four curves with h having the values 0, 1, 2, 3. To use smaller values you must scale the iteration value later:
plot for [h=0:20:1] sin(0.1*h*x)

In addition to Christoph's answer, another way to do arbitrary increment loops without the need to do the scaling within the function is to define a list of values that contains all the elements to loop through. This can easily be done with a system call to seq:
list(start,end,increment)=system(sprintf("seq %g %g %g", start, increment, end))
plot for [i in list(0.,1.,0.1)] sin(i*x)
An equivalent gnuplot-only solution (proposed by Karl in the comments) that will work also if seq is not available is the following:
start=0.; end=1.; inc=0.1
list = ""; a=start-inc; while (a<end) {list=list.sprintf(" %.3f",a=a+inc)}
plot for [i in list] sin(i*x)
Note that while loops are only available since gnuplot 4.6.

Related

Removing vertical lines due to sudden jumps in gnuplot

I am trying to plot a function that contains discontinuities in gnuplot. As a result, gnuplot automatically draws a vertical line connecting the jump discontinuities. I would like to remove this line. I have looked around and found two solutions, none of which worked: One solution was to use smooth unique when plotting, and the other one was to define the function in a conditional form and remove the discontinuity manually. The first solution simply did not make any changes to the plot (at least visually). The second solution seemed to move the location of the jump discontinuity to left or right, not get rid of the vertical line. Please note that I would like to plot with lines. I know with points works, but I do not wish to plot with points.
set sample 10000
N=50
l1(x)=2*cosh(1/x)
l2(x)=2*sinh(1/x)
Z(x)=l1(x)**N+l2(x)**N
e(x)=(-1/Z(x))*(l2(x)*l1(x)**(N-1)+l1(x)*l2(x)**(N-1))
plot e(x)
Produces:
If all you need to do is to remove the vertical line at the singularity you could use conditional plotting:
plot (x<0 ? 1/x : 1/0) w l ls 1, (x>0 ? 1/x : 1/0) w l ls 1
However, your function is more complicated: it cannot be numerically evaluated in a region around 0:
set grid
set xrange [-0.3:0.3]
plot e(x) with linespoints
If Mathematica is to be trusted, the function e(x) goes to 1 and -1 as x approaches 0 from the left and the right, respectively. However, you see in the picture above that gnuplot fails to properly evaluate the function already at x=0.1. print e(0.1) gives -0.0, and print e(0.05) already gives NaN. In this region the numerator and denominator of the function e(x) get too large to be handled with floating point numbers.
You can either exclude this region using conditional plotting,
plot (x<-0.15 ? e(x) : 1/0) w l ls 1, (x>0.15 ? e(x) : 1/0) w l ls 1
or you have to rewrite the function e(x) so you avoid extremely large values in its evaluation (if that is possible). Alternatively you can use a software package that can switch to higher precision, such as Mathematica.
You can redefine your function e(x) to avoid calculations of large exponentials like
e(x) = -(l2(x)/l1(x) + (l2(x)/l1(x))**(N-1))/(1 + (l2(x)/l1(x))**N)
Now you always calculate l2(x)/l1(x) before taking the power.
For your high sampling rate of 10000, this still gives some undefined points near the singularity, so that you have not connecting line. For lower sampling rates of e.g. 1000 you would also see a line crossing zero. To avoid that you can use an odd sampling rate:
set sample 1001
N=50
l1(x)=2*cosh(1/x)
l2(x)=2*sinh(1/x)
Z(x)=l1(x)**N+l2(x)**N
e(x) = -(l2(x)/l1(x) + (l2(x)/l1(x))**(N-1))/(1 + (l2(x)/l1(x))**N)
set autoscale yfix
set offsets 0,0,0.05,0.05
plot e(x) with lines
Late answer... but you can use the same principle as
here:
How to remove line between "jumping" values, in gnuplot?
or here:
Avoid connection of points when there is empty data
Just find the condition for where you want the line to be interrupted.
The condition in this case would be for example:
If two successive values y0 and y1 have different signs then make the line color fully transparent according to the color scheme 0xaarrggbb, e.g. 0xff123456, actually it doesn't matter what comes after 0xff, because 0xff means fully transparent.
Script:
### remove connected "jump" in curve
reset session
N=50
l1(x)=2*cosh(1/x)
l2(x)=2*sinh(1/x)
Z(x)=l1(x)**N+l2(x)**N
e(x)=(-1/Z(x))*(l2(x)*l1(x)**(N-1)+l1(x)*l2(x)**(N-1))
set key noautotitle
set grid x,y
plot y1=NaN '+' u 1:(y0=y1, y1=e(x)):(sgn(y0)!=sgn(y1)?0xff123456:0xff0000) w l lc rgb var
### end of code
Result: (identical independent of the number of samples)

How to plot lines parallel to the x-axis with a certain offset given by data in an input file with gnuplot

I calculated the eigenvalues of the Hamiltonian for the 1D-hydrogen atom in atomic units with the Fourier-Grid-Hamiltonian method in a nice little Fortran program.
All the eigenvalues found between -1 and 0 (the bound states) are saved into a file line by line like this:
-0.50016671392950229
-0.18026105614262633
-0.11485673263086937
-4.7309305955423042E-002
-4.7077108902158216E-002
As the number of found eigenvalues differs depends on the stepsize my program uses, the number of entries in the file can vary (in theory, there are infinite ones).
I now want to plot the values from the file as a line parallel to the x-axis with the offset given by the values read from file.
I also want to be able to plot the data only up to a certain line number, as the values get really close to each other the further you come to zero and they cannot be distinguished by eye anymore.
(Here e.g. it would make sence to plot the first four entries, the fifth is already too close to the previous one)
I know that one can plot lines parallel to the x axis with the command plot *offset* but I don't know how to tell gnuplot to use the data from the file. So far I had to manually plot the values.
As a second step I would like to plot the data only in a certain x range, more concrete between the points of intersection with the harmonic potential used for the numeric solution V(x) = -1/(1+abs(x))
The result should look like this:
scheme of the desired plot (lookalike)
The closest I got to, was with
plot -1/(1+abs(x)),-0.5 title 'E0',-0.18 title 'E1', -0.11 title 'E2'
which got me the following result:
my plot
Hope you guys can help me, and I'm really curios whether gnuplot actually can do the second step I described!
As for the first part of your question, you can for example use the xerrorbars plotting style as:
set terminal pngcairo
set output 'fig.png'
unset key
set xr [-1:1]
set yr [-1:0]
unset bars
plot '-' u (0):($1<-0.1?$1:1/0):(1) w xerrorbars pt 0 lc rgb 'red'
-0.50016671392950229
-0.18026105614262633
-0.11485673263086937
-4.7309305955423042E-002
-4.7077108902158216E-002
e
The idea here is to:
interpret the energies E as points with coordinates (0,E) and assign to each of them an x-errorbar of width 1 (via the third part of the specification (0):($1<-0.1?$1:1/0):(1))
"simulate" the horizontal lines with x-errorbars. To this end, unset bars and pt 0 ensure that Gnuplot displays just plain lines.
consider only energies E<-0.1, the expressions $1<-0.1?$1:1/0 evaluates otherwise to an undefined value 1/0 which has the consequence that nothing is plotted for such E.
plot '-' with explicit values can be of course replaced with, e.g., plot 'your_file.dat'
This produces:
For the second part, it mostly depends how complicated is your function V(x). In the particular case of V(x)=-1/(1+|x|), one could infer directly that it's symmetric around x=0 and calculate the turning points explicitly, e.g.,
set terminal pngcairo
set output 'fig.png'
fName = 'test.dat'
unset key
set xr [-10:10]
set yr [-1:0]
unset bars
f(x) = -1 / (1+abs(x))
g(y) = (-1/y - 1)
plot \
f(x) w l lc rgb 'black', \
fName u (0):($1<-0.1?$1:1/0):(g($1)) w xerrorbars pt 0 lc rgb 'red', \
fName u (0):($1<-0.1?$1:1/0):(sprintf("E%d", $0)) w labels offset 0, char 0.75
which yields
The idea is basically the same as before, just the width of the errorbar now depends on the y-coordinate (the energy). Also, the labels style is used in order to produce explicit labels.
Another approach may be to get data from "energy.dat" (as given in the question) with system and cat commands (so assuming a Un*x-like system...) and select V(x) and E at each x via max:
set key bottom right
set yr [-1:0.2]
set samples 1000
Edat = system( "cat energy.dat" )
max(a,b) = ( a > b ) ? a : b
V(x) = -1/(1+abs(x))
plot for [ E in Edat ] \
max(V(x),real(E)) title sprintf("E = %8.6f", real(E)) lw 2, \
V(x) title "V(x) = -1/(1+|x|)" lc rgb "red" lw 2
If we change the potential to V(x) = -abs(cos(x)), the plot looks pretty funny (and the energy levels are of course not correct!)
More details about the script:
max is not a built-in function in Gnuplot, but a user-defined function having two formal arguments. So for example, we may define it as
mymax( p, q ) = ( p > q ) ? p : q
with any other names (and use mymax in the plot command). Next, the ? symbol is a ternary operator that gives a short-hand notation for an if...else construct. In a pseudo-code, it works as
function max( a, b ) {
if ( a > b ) then
return a
else
return b
end
}
This way, max(V(x),real(E)) selects the greater value between V(x) and real(E) for any given x and E.
Next, Edat = system( "cat energy.dat" ) tells Gnuplot to run the shell command "cat energy.dat" and assign the output to a new variable Edat. In the above case, Edat becomes a string that contains a sequence of energy values read in from "energy.dat". You can check the contents of Edat by print( Edat ). For example, it may be something like
Edat = "-0.11 -0.22 ... -0.5002"
plot for [ E in Edat ] ... loops over words contained in a string Edat. In the above case, E takes a string "-0.11", "-0.22", ..., "-0.5002" one-by-one. real(E) converts this string to a floating-point value. It is used to pass E (a character string) to any mathematical function.
The basic idea is to draw a truncated potential above E, max(V(x),E), for each value of E. (You can check the shape of such potential by plot max(V(x),-0.5), for example). After plotting such curves, we redraw the potential V(x) to make it appear as a single potential curve with a different color.
set samples 1000 increases the resolution of the plot with 1000 points per curve. 1000 is arbitrary, but this seems to be sufficient to make the figure pretty smooth.

Plotting Average curve for points in gnuplot

[Current]
I am importing a text file in which the first column has simulation time (0~150) the second column has the delay (0.01~0.02).
1.000000 0.010007
1.000000 0.010010
2.000000 0.010013
2.000000 0.010016
.
.
.
149.000000 0.010045
149.000000 0.010048
150.000000 0.010052
150.000000 0.010055
which gives me the plot:
[Desired]
I need to plot an average line on it like shown in the following image with red line:
Here is a gnuplot only solution with sample data:
set table "test.data"
set samples 1000
plot rand(0)+sin(x)
unset table
You should check the gnuplot demo page for a running average. I'm going to generalize this demo in terms of dynamically building the functions. This makes it much easier to change the number of points include in the average.
This is the script:
# number of points in moving average
n = 50
# initialize the variables
do for [i=1:n] {
eval(sprintf("back%d=0", i))
}
# build shift function (back_n = back_n-1, ..., back1=x)
shift = "("
do for [i=n:2:-1] {
shift = sprintf("%sback%d = back%d, ", shift, i, i-1)
}
shift = shift."back1 = x)"
# uncomment the next line for a check
# print shift
# build sum function (back1 + ... + backn)
sum = "(back1"
do for [i=2:n] {
sum = sprintf("%s+back%d", sum, i)
}
sum = sum.")"
# uncomment the next line for a check
# print sum
# define the functions like in the gnuplot demo
# use macro expansion for turning the strings into real functions
samples(x) = $0 > (n-1) ? n : ($0+1)
avg_n(x) = (shift_n(x), #sum/samples($0))
shift_n(x) = #shift
# the final plot command looks quite simple
set terminal pngcairo
set output "moving_average.png"
plot "test.data" using 1:2 w l notitle, \
"test.data" using 1:(avg_n($2)) w l lc rgb "red" lw 3 title "avg\\_".n
This is the result:
The average lags quite a bit behind the datapoints as expected from the algorithm. Maybe 50 points are too many. Alternatively, one could think about implementing a centered moving average, but this is beyond the scope of this question.
And, I also think that you are more flexible with an external program :)
Here's some replacement code for the top answer, which makes this also work for 1000+ points and much much faster. Only works in gnuplot 5.2 and later I guess
# number of points in moving average
n = 5000
array A[n]
samples(x) = $0 > (n-1) ? n : int($0+1)
mod(x) = int(x) % n
avg_n(x) = (A[mod($0)+1]=x, (sum [i=1:samples($0)] A[i]) / samples($0))
Edit
The updated question is about a moving average.
You can do this in a limited way with gnuplot alone, according to this demo.
But in my opinion, it would be more flexible to pre-process your data using a programming language like python or ruby and add an extra column for whatever kind of moving average you require.
The original answer is preserved below:
You can use fit. It seems you want to fit to a constant function. Like this:
f(x) = c
fit f(x) 'S1_delay_120_LT100_LU15_MU5.txt' using 1:2 every 5 via c
Then you can plot them both.
plot 'S1_delay_120_LT100_LU15_MU5.txt' using 1:2 every 5, \
f(x) with lines
Note that this is technique can be used with arbitrary functions, not just constant or lineair functions.
I wanted to comment on Franky_GT, but somehow stackoverflow didn't let me.
However, Franky_GT, your answer works great!
A note for people plotting .xvg files (e.g. after doing analysis of MD simulations), if you don't add the following line:
set datafile commentschars "##&"
Franky_GT's moving average code will result in this error:
unknown type in imag()
I hope this is of use to anyone.
For gnuplot >=5.2, probably the most efficient solution is using an array like #Franky_GT's solution.
However, it uses the pseudocolumn 0 (see help pseudocolumns). In case you have some empty lines in your data $0 will be reset to 0 which eventually might mess up your average.
This solution uses an index t to count up the datalines and a second array X[] in case a centered moving average is desired. Datapoints don't have to be equidistant in x.
At the beginning there will not be enough datapoints for a centered average of N points so for the x-value it will use every second point and the other will be NaN, that's why set datafile missing NaN is necessary to plot a connected line at the beginning.
Code:
### moving average over N points
reset session
# create some test data
set print $Data
y = 0
do for [i=1:5000] {
print sprintf("%g %g", i, y=y+rand(0)*2-1)
}
set print
# average over N values
N = 250
array Avg[N]
array X[N]
MovAvg(col) = (Avg[(t-1)%N+1]=column(col), n = t<N ? t : N, t=t+1, (sum [i=1:n] Avg[i])/n)
MovAvgCenterX(col) = (X[(t-1)%N+1]=column(col), n = t<N ? t%2 ? NaN : (t+1)/2 : ((t+1)-N/2)%N+1, n==n ? X[n] : NaN) # be aware: gnuplot does integer division here
set datafile missing NaN
plot $Data u 1:2 w l ti "Data", \
t=1 '' u 1:(MovAvg(2)) w l lc rgb "red" ti sprintf("Moving average over %d",N), \
t=1 '' u (MovAvgCenterX(1)):(MovAvg(2)) w l lw 2 lc rgb "green" ti sprintf("Moving average centered over %d",N)
### end of code
Result:

Plotting of Parametric functions using cubic function close to zero generates garbage

So I'm trying to plot three parametric functions using the gnuplot;
unfortunately, I cannot get around some garbage that is generated in the output plot. I tried to isolate the problem by splitting a function j into j1 and j2, just changing the position of the minus sign. Unexpectedly, the functions j1 and j2 jump strangely when close to the origin. I currently use version 4.6 of gnuplot, any suggestions?
CODE BELOW:
set parametric
j1(x) = -((1.0/27.0*(1.+9.*x))/2.0)**(1./3.) #negative portion
j2(x) = (-(1.0/27.0*(1.+9.*x))/2.0)**(1./3.)
k(x) = ((-x/3.0)**(3./2.))**(1./3.)
l(x) = -((-x/3.0)**(3./2.))**(1.0/3.0)
tt(x) = sqrt(-x/3.)
set trange [-1.0/3.0:0]
set yrange [0:1.0/3.0]
set xrange [-1./6.:1./3]
plot j1(t),tt(t) w l ls 1, j2(t),tt(t) w l ls 1, k(t),tt(t) w l ls 2, l(t),tt(t) w l ls 3
The problem comes from selecting the cube root of a negative number. Gnuplot can work with complex numbers, and in the complex number system there are three cube roots of any number†. For a real number, one of these is real and two are complex. Gnuplot is selecting the first‡ one which is complex for a negative number (for a positive number, the first one is real).
print (-8)**(1/3.0) # prints {1.0, 1.73205080756888}
The solution is to construct our own cube root function
cuberoot(x) = sgn(x)*abs(x)**(1/3.0)
This will select take the cube root of the absolute value (always positive) and make the result have the same sign as the original.
We can then use it in our functions
j1(x) = -cuberoot((1.0/27.0*(1.+9.*x))/2.0) #negative portion
j2(x) = cuberoot(-(1.0/27.0*(1.+9.*x))/2.0)
leaving the rest of the code alone.
Without custom cuberoot function
With custom cuberoot function
† For the given example of -8, they are 1 + 1.7320508i, -2, and 1 - 1.7320508i.
‡ When ordered in increasing order by complex argument (restricted to the interval [0,2π) ).

reduce datapoints when using logscale in gnuplot

I have a large set of data points from x = 1 to x = 10e13 (step size is fixed to about 3e8).
When I try to plot them using a logscale I certainly get an incredible huge point-density towards the end. Of course this affects my output plots since postscript and svg files (holding each and every data point) are getting really big.
Is there a way to tell gnuplot to decrease the data density dynamically?
Sample data here. Shows a straight line using logarithmic x-axis.
Usually, for this kind of plots, one can use a filter function which selects the desired points and discards all others (sets their value to 1/0:
Something like:
plot 'sample.dat' using (filter($1) ? $1 : 1/0):2
Now you must define an appropriate filter function to change the data density. Here is a proposal, with pseudo-data, although you might for sure find a better one, which doesn't show this typical logarithmic pattern:
set logscale x
reduce(x) = x/(10**(floor(log10(x))))
filterfunc(x) = abs(log10(sc)+(log10(x) - floor(log10(x))) - log10(floor(sc*reduce(x))))
filter(x) = filterfunc(x) < 1e-5 ? x : 1/0
set multiplot layout 1,2
sc = 1
plot 'sample.data' using (filter($1)):2 notitle
sc = 10
replot
The variable sc allows to change the density. The result is (with 4.6.5) is:
I did some work inspired by Christoph's answer and able to get equal spacing in log scale. I made a filtering, if you have numbers in the sequence you can simply use Greatest integer function and then find the nearest to it in log scale by comparing the fraction part. Precision is tuned by precision_parameter here.
precision_parameter=100
function(x)=(-floor(precision_parameter*log10(x))+(precision_parameter*log10(x)))
Now filter by using the filter function defined below
density_parameter = 3.5
filter(x)=(function(x) < 1/(log10(x))**density_parameter & function(x-1) > 1/(log10(x))**density_parameter ) ? x : 1/0
set datafile missing "NaN"
Last line helps in plotting with line point. I used x and x-1 assuming the xdata is in arithmetic progression with 1 as common difference, change it accordingly with your data. Just replace x by filter(x) in the plot command.
plot 'sample_data.dat' u (filter($1)):2 w lp

Resources