I'm supposed to read Phoenix data into pyspark.
edit:
I'm using Spark HBase converters:
Here is a code snippet:
port="2181"
host="zookeperserver"
keyConv = "org.apache.spark.examples.pythonconverters.ImmutableBytesWritableToStringConverter"
valueConv = "org.apache.spark.examples.pythonconverters.HBaseResultToStringConverter"
cmdata_conf = {"hbase.zookeeper.property.clientPort":port, "hbase.zookeeper.quorum": host, "hbase.mapreduce.inputtable": "camel", "hbase.mapreduce.scan.columns": "data:a"}
sc.newAPIHadoopRDD("org.apache.hadoop.hbase.mapreduce.TableInputFormat","org.apache.hadoop.hbase.io.ImmutableBytesWritable","org.apache.hadoop.hbase.client.Result",keyConverter=keyConv,valueConverter=valueConv,conf=cmdata_conf)
Traceback:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/hdp/2.3.0.0-2557/spark/python/pyspark/context.py", line 547, in newAPIHadoopRDD
jconf, batchSize)
File "/usr/hdp/2.3.0.0-2557/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/usr/hdp/2.3.0.0-2557/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.newAPIHadoopRDD.
: java.io.IOException: No table was provided.
at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:130)
Any help would be much appreciated.
Thank you!
/Tina
Using spark phoenix plugin is the recommended approach.
please find details about phoenix spark plugin here
Environment : tested with AWS EMR 5.10 , PySpark
Following are the steps
Create Table in phoenix https://phoenix.apache.org/language/
Open Phoenix shell
“/usr/lib/phoenix/bin/sqlline.py“
DROP TABLE IF EXISTS TableName;
CREATE TABLE TableName (DOMAIN VARCHAR primary key);
UPSERT INTO TableName (DOMAIN) VALUES('foo');
Download spark phoenix plugin jar
download spark phoenix plugin jar from https://mvnrepository.com/artifact/org.apache.phoenix/phoenix-core/4.11.0-HBase-1.3
you need phoenix--HBase--client.jar , i used phoenix-4.11.0-HBase-1.3-client.jar as per my phoenix and hbase version
From your hadoop home directory, setup the following variable:
phoenix_jars=/home/user/apache-phoenix-4.11.0-HBase-1.3-bin/phoenix-4.11.0-HBase-1.3-client.jar
Start PySpark shell and add the dependency in Driver and executer classpath
pyspark --jars ${phoenix_jars} --conf spark.executor.extraClassPath=${phoenix_jars}
--Create ZooKeeper URL ,Replace with your cluster zookeeper quorum, you can check from hbase-site.xml
emrMaster = "ZooKeeper URL"
df = sqlContext.read \
.format("org.apache.phoenix.spark") \
.option("table", "TableName") \
.option("zkUrl", emrMaster) \
.load()
df.show()
df.columns
df.printSchema()
df1=df.replace(['foo'], ['foo1'], 'DOMAIN')
df1.show()
df1.write \
.format("org.apache.phoenix.spark") \
.mode("overwrite") \
.option("table", "TableName") \
.option("zkUrl", emrMaster) \
.save()
There are two ways to do this :
1) As Phoenix has a JDBC layer you can use Spark JdbcRDD to read data from Phoenix in Spark https://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/rdd/JdbcRDD.html
2) Using Spark HBAse Converters:
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/pythonconverters/HBaseConverters.scala
https://github.com/apache/spark/tree/master/examples/src/main/python
Related
I'm trying to retrieve data from MariaDB with pyspark.
I created spark_session with configuration to include jdbc jar file, but couldn't solve problem. Current code to create session looks like below.
path = "hdfs://nameservice1/user/PATH/TO/JDBC/mariadb-java-client-2.7.1.jar"
# or path = "/home/PATH/TO/JDBC/mariadb-java-client-2.7.1.jar"
spark = SparkSession.config("spark.jars", path)\
.config("spark.driver.extraClassPath", path)\
.config("spark.executor.extraClassPath", path)\
.enableHiveSupport()
.getOrCreate()
Note that I've tried every case of configuration I know
(Check Permission, change directory both hdfs or local, add or remove configuration ...)
And then, code to load data is.
sql = "SOME_SQL_TO_RETRIEVE_DATA"
spark = spark.read.format('jdbc').option('dbtable', sql)
.option('url', 'jdbc:mariadb://{host}:{port}/{db}')\
.option("user", SOME_USER)
.option("password", SOME_PASSWORD)
.option("driver", 'org.mariadb.jdbc.Driver')
.load()
But it fails with java.lang.ClassNotFoundException: org.mariadb.jdbc.Driver
When I tried this with spark-submit, I saw log message.
... INFO SparkContext: Added Jar /PATH/TO/JDBC/mariadb-java-client-2.7.1.jar at spark://SOME_PATH/jars/mariadb-java-client-2.7.1.jar with timestamp SOME_TIMESTAMP
What is wrong?
For anyone who suffers from same problem.
I figured out. Spark Document says that
Note: In client mode, this config must not be set through the SparkConf directly in your application, because the driver JVM has already started at that point. Instead, please set this through the --driver-class-path command line option or in your default properties file.
So instead setting configuration on python code, I added arguments on spark-submit following this document.
spark-submit {other arguments ...} \
--driver-class-path PATH/TO/JDBC/my-jdbc.jar \
--jars PATH/TO/JDBC/my-jdbc.jar \
MY_PYTHON_SCRIPT.py
Spark version:3.00
scala:2.12
Cassandra::3.11.4
spark-cassandra-connector_2.12-3.0.0-alpha2.jar
I am not using DSE. Below is my test code to write the dataframe into my Cassandra database.
spark = SparkSession \
.builder \
.config("spark.jars","spark-streaming-kafka-0-10_2.12-3.0.0.jar,spark-sql-kafka-0-10_2.12-3.0.0.jar,kafka-clients-2.5.0.jar,commons-pool2-2.8.0.jar,spark-token-provider-kafka-0-10_2.12-3.0.0.jar,**spark-cassandra-connector_2.12-3.0.0-alpha2.jar**") \
.config("spark.cassandra.connection.host", "127.0.0.1")\
.config('spark.cassandra.output.consistency.level', 'ONE')\
.appName("StructuredNetworkWordCount") \
.getOrCreate()
streamingInputDF = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "192.168.56.1:9092") \
.option("subscribe", "def") \
.load()
##Dataset operations
def write_to_cassandra(streaming_df,E):
streaming_df\
.write \
.format("org.apache.spark.sql.cassandra") \
.options(table="a", keyspace="abc") \
.save()
q1 =sites_flat.writeStream \
.outputMode('update') \
.foreachBatch(write_to_cassandra) \
.start()
q1.awaitTermination()
I am able to do some operations to dataframe and print it to the console but I am not able to save or even read it from my Cassandra database. The error i am getting is:
File "C:\opt\spark-3.0.0-bin-hadoop2.7\python\lib\py4j-0.10.9-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o70.load.
: java.lang.NoClassDefFoundError: com/datastax/spark/connector/TableRef
at org.apache.spark.sql.cassandra.DefaultSource$.TableRefAndOptions(DefaultSource.scala:142)
at org.apache.spark.sql.cassandra.DefaultSource.createRelation(DefaultSource.scala:56)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:339)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:279)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$2(DataFrameReader.scala:268)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:268)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:203)
I have tried with other cassandra connector version(2.5) but getting the same error
Please help!!!
The problem is that you're using spark.jars options that includes only provided jars into the classpath. But the TableRef case class is in the spark-cassandra-connector-driver package that is dependency for spark-cassandra-connector. To fix this problem, it's better to start the pyspark or spark-submit with --packages com.datastax.spark:spark-cassandra-connector_2.12:3.0.0-alpha2 (same for kafka support) - in this case Spark will fetch all necessary dependencies & put them into classpath.
P.S. With alpha2 release you may get problems with fetching some dependencies, like, ffi, groovy, etc. - this is a known bug (mostly in Spark): SPARKC-599, that is already fixed, and we'll hopefully get beta drop very soon.
Update (14.03.2021): It's better to use assembly version of SCC that includes all necessary dependencies.
P.P.S. for writing to Cassandra from Spark Structured Streaming, don't use foreachbatch, just use as normal data sink:
val query = streamingCountsDF.writeStream
.outputMode(OutputMode.Update)
.format("org.apache.spark.sql.cassandra")
.option("checkpointLocation", "webhdfs://192.168.0.10:5598/checkpoint")
.option("keyspace", "test")
.option("table", "sttest_tweets")
.start()
I ran into the same problem,try it :
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>2.4.3</version>
</dependency>
version compatibility is presumed to be the cause
I am trying to read data from GCS buckets on my local machine, for testing purposes. I would like to sample some of the data in the cloud
I have downloaded the GCS Hadoop Connector JAR.
And setup the sparkConf as follow:
conf = SparkConf() \
.setMaster("local[8]") \
.setAppName("Test") \
.set("spark.jars", "path/gcs-connector-hadoop2-latest.jar") \
.set("spark.hadoop.google.cloud.auth.service.account.enable", "true") \
.set("spark.hadoop.google.cloud.auth.service.account.json.keyfile", "path/to/keyfile")
sc = SparkContext(conf=conf)
spark = SparkSession.builder \
.config(conf=sc.getConf()) \
.getOrCreate()
spark.read.json("gs://gcs-bucket")
I have also tried to set the conf like so:
sc._jsc.hadoopConfiguration().set("fs.AbstractFileSystem.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS")
sc._jsc.hadoopConfiguration().set("fs.gs.auth.service.account.json.keyfile", "path/to/keyfile")
sc._jsc.hadoopConfiguration().set("fs.gs.auth.service.account.enable", "true")
I am using PySpark install via PIP and running the code using the unit test module from IntelliJ
py4j.protocol.Py4JJavaError: An error occurred while calling o128.json.
: java.io.IOException: No FileSystem for scheme: gs
What should I do?
Thanks!
To solve this issue, you need to add configuration for fs.gs.impl property in addition to properties that you already configured:
sc._jsc.hadoopConfiguration().set("fs.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem")
I am trying to read data from a Redshift table into a Spark 2.0 dataframe.
My call looks like this:
df = spark.read \
.format("com.databricks.spark.redshift") \
.option("url", "jdbc:redshift://hostname:5439/dbname?user=myuser&password=pwd&ssl=true&sslfactory=com.amazon.redshift.ssl.NonValidatingFactory") \
.option("dbtable", "myschema.mytable") \
.option('forward_spark_s3_credentials',"true") \
.option("tempdir", "s3a://mybucket/tmp2") \
.option("region", "us-east-1") \
.load()
This returns ok without errors.
However, when I run
df.collect()
I obtain the error below:
17/02/07 17:37:36 WARN Utils$: An error occurred while trying to read
the S3 bucket lifecycle configuration
java.lang.IllegalArgumentException: Invalid S3 URI: hostname does not
appear to be a valid S3 endpoint: s3://mybucket/tmp2
at com.amazonaws.services.s3.AmazonS3URI.<init>(AmazonS3URI.java:65)
at com.amazonaws.services.s3.AmazonS3URI.<init>(AmazonS3URI.java:42)
at com.databricks.spark.redshift.Utils$.checkThatBucketHasObjectLifecycleConfiguration(Utils.scala:72)
at com.databricks.spark.redshift.RedshiftRelation.buildScan(RedshiftRelation.scala:76)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$anonfun$11.apply(DataSourceStrategy.scala:336)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$anonfun$11.apply(DataSourceStrategy.scala:336)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:384)
at ...
The data is then subsequently returned...
Out[2]: [Row(col1=1, col2=u'yyyyy', col3=datetime.date(2015, 1, 6), col4=datetime.date(2017, 1, 6), col5=Decimal('21'), col6=u'ABCDEF',...)]
Points to note:
This error occurs for both spark-submit and pyspark
The version of
Spark is 2.1 and the jars directory contains these pertinent files:
RedshiftJDBC4-1.2.1.1001.jar
aws-java-sdk-1.7.4.jar
spark-redshift_2.11-0.5.0.jar
hadoop-aws-2.7.3.jar
I have tried other combinations esp of the aws-java but in such cases, I don't even get the dataframe to return. I get an an error from the spark.read call.
The tmp2 bucket directory in S3 exists and is written to with a split
file containing the results from Redshift.
This is being run under a federated login and there is no need to supply credentials
explicitly.
Any help/suggestions would be greatly appreciated.
Check if bucket and redshift DB are in same aws regions?
I'm attempting to run a pyspark script on BigInsights on Cloud 4.2 Enterprise that accesses a Hive table.
First I create the hive table:
[biadmin#bi4c-xxxxx-mastermanager ~]$ hive
hive> CREATE TABLE pokes (foo INT, bar STRING);
OK
Time taken: 2.147 seconds
hive> LOAD DATA LOCAL INPATH '/usr/iop/4.2.0.0/hive/doc/examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
Loading data to table default.pokes
Table default.pokes stats: [numFiles=1, numRows=0, totalSize=5812, rawDataSize=0]
OK
Time taken: 0.49 seconds
hive>
Then I create a simple pyspark script:
[biadmin#bi4c-xxxxxx-mastermanager ~]$ cat test_pokes.py
from pyspark import SparkContext
sc = SparkContext()
from pyspark.sql import HiveContext
hc = HiveContext(sc)
pokesRdd = hc.sql('select * from pokes')
print( pokesRdd.collect() )
I attempt to execute with:
spark-submit --master yarn-cluster test_pokes.py
However, I encounter the error:
You must build Spark with Hive. Export 'SPARK_HIVE=true' and run build/sbt assembly
Traceback (most recent call last):
File "test_pokes.py", line 8, in <module>
pokesRdd = hc.sql('select * from pokes')
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/pyspark.zip/pyspark/sql/context.py", line 580, in sql
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/pyspark.zip/pyspark/sql/context.py", line 683, in _ssql_ctx
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/pyspark.zip/pyspark/sql/context.py", line 692, in _get_hive_ctx
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/py4j-0.9-src.zip/py4j/java_gateway.py", line 1064, in __call__
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/pyspark.zip/pyspark/sql/utils.py", line 45, in deco
File "/disk2/local/usercache/biadmin/appcache/application_1477084339086_0476/container_e09_1477084339086_0476_02_000001/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.sql.hive.HiveContext.
: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522)
...
...
Caused by: javax.jdo.JDOFatalUserException: Class org.datanucleus.api.jdo.JDOPersistenceManagerFactory was not found.
NestedThrowables:
java.lang.ClassNotFoundException: org.datanucleus.api.jdo.JDOPersistenceManagerFactory
...
...
at javax.jdo.JDOHelper.forName(JDOHelper.java:2015)
at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1162)
I have seen a number of similar posts for other Hadoop distributions, but not for BigInsights on Cloud.
The solution to this error was to add the jars:
[biadmin#bi4c-xxxxxx-mastermanager ~]$ spark-submit \
--master yarn-cluster \
--deploy-mode cluster \
--jars /usr/iop/4.2.0.0/hive/lib/datanucleus-api-jdo-3.2.6.jar, \
/usr/iop/4.2.0.0/hive/lib/datanucleus-core-3.2.10.jar, \
/usr/iop/4.2.0.0/hive/lib/datanucleus-rdbms-3.2.9.jar \
test_pokes.py
However, I then get a different error:
pyspark.sql.utils.AnalysisException: u'Table not found: pokes; line 1 pos 14'
I've added the other question here: Spark Hive reporting pyspark.sql.utils.AnalysisException: u'Table not found: XXX' when run on yarn cluster
The final solution is captured here: https://stackoverflow.com/a/41272260/1033422