Local cassandra for testing purposes getting slower over time - cassandra

I do know that it's a cassandra anti-pattern to delete rows (and more so – doing it frequently), but in my simple use case I have a local cassandra (single instance, replication factor set to 1) that I use for unit tests, which drop all tables before running, naturally to perform the tests with a clean slate.
Over time, the performance of this cassandra instance degraded extremely. It surprised me a bit that dropping the keyspaces althogether didn't help at all. Only by manually deleting everything in cassandra data directory I managed to recover all the performance.
This solution is quite fine for me as I don't care for the test data I delete over and over again, but it certainly feels a bit weird to have to delete these things manually on file system. Is there a better way to deal with such situation? Or am I going about this whole case completely wrong?

Based on the little information provided, I will provide some info:
First, deleting data creates tombstones in cassandra. The default behavior is to keep these tombstones for 10 days, set by the variable gc_grace_seconds.
Given you only have 1 node and don't care about the data once you delete it, you could set gc_grace_seconds to zero. You also could make sure to run compaction after you do a lot of deletes.
Documentation here:
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/tabProp.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/tools/toolsCompact.html
Lastly, there is a feature known as TTL, Time To Live. You could use that instead of deleting and let the database do the "deletes" once the data expires. If you go this route, I would still set gc_grace_seconds to zero and run compactions (via an hourly cronjob since its a dev environment).

Related

Cassandra repairs on TWCS

We have a 13 nodes Cassandra cluster (version 3.10) with RP 2 and read/write consistency of 1.
This means that the cluster isn't fully consistent, but eventually consistent. We chose this setup to speed up the performance, and we can tolerate a few seconds of inconsistency.
The tables are set with TWCS with read-repair disabled, and we don't run full repairs on them
However, we've discovered that some entries of the data are replicated only once, and not twice, which means that when the not-updated node is queried it fails to retrieve the data.
My first question is how could this happen? Shouldn't Cassandra replicate all the data?
Now if we choose to perform repairs, it will create overlapping tombstones, therefore they won't be deleted when their time is up. I'm aware of the unchecked_tombstone_compaction property to ignore the overlap, but I feel like it's a bad approach. Any ideas?
So you've obviously made some deliberate choices regarding your client CL. You've opted to potentially sacrifice consistency for speed. You have achieved your goals, but you assumed that data would always make it to all of the other nodes in the cluster that it belongs. There are no guarantees of that, as you have found out. How could that happen? There are multiple reasons I'm sure, some of which include: networking/issues, hardware overload (I/O, CPU, etc. - which can cause dropped mutations), cassandra/dse being unavailable for whatever reasons, etc.
If none of your nodes have not been "off-line" for at least a few hours (whether it be dse or the host being unavailable), I'm guessing your nodes are dropping mutations, and I would check two things:
1) nodetool tpstats
2) Look through your cassandra logs
For DSE: cat /var/log/cassandra/system.log | grep -i mutation | grep -i drop (and debug.log as well)
I'm guessing you're probably dropping mutations, and the cassandra logs and tpstats will record this (tpstats will only show you since last cassandra/dse restart). If you are dropping mutations, you'll have to try to understand why - typically some sort of load pressure causing it.
I have scheduled 1-second vmstat output that spools to a log continuously with log rotation so I can go back and check a few things out if our nodes start "mis-behaving". It could help.
That's where I would start. Either way, your decision to use read/write CL=1 has put you in this spot. You may want to reconsider that approach.
Consistency level=1 can create a problem sometimes due to many reasons like if data is not replicating to the cluster properly due to mutations or cluster/node overload or high CPU or high I/O or network problem so in this case you can suffer data inconsistency however read repair handles this problem some times if it is enabled. you can go with manual repair to ensure consistency of the cluster but you can get some zombie data too for your case.
I think, to avoid this kind of issue you should consider CL at least Quorum for write or you should run manual repair within GC_grace_period(default is 10 days) for all the tables in the cluster.
Also, you can use incremental repair so that Cassandra run repair in background for chunk of data. For more details you can refer below link
http://cassandra.apache.org/doc/latest/operating/repair.html or https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/tools/toolsRepair.html

What is the best way to query timeseries data with cassandra?

My table is a time series one. The queries are going to process the latest entries and TTL expire them after successful processing. If they are not successfully processed, TTL will not set.
The only query I plan to run on this is to select all entries for a given entry_type. They will be processed and records corresponding to processed entries will be expired.
This way every time I run this query I will get all records in the table that are not processed and processing will be done. Is this a reasonable approach?
Would using a listenablefuture with my own executor add any value to this considering that the thread doing the select is just processing.
I am concerned about the TTL and tombstones. But if I use clustering key of timeuuid type is this ok?
You are right one important thing getting in your way will be tombstones. By Default you will keep them around for 10 days. Depending on your access patter this might cause significant problems. You can lower this by setting the directly on the table or change it in the cassandra yaml file. Then it will be valid for all the newly created table gc_grace_seconds
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/tabProp.html
It is very important that you make sure you are running the repair on whole cluster once within this period. So if you lower this setting to let's say 2 days, then within two days you have to have one full repair done on the cluster. This is very important because processed data will reaper. I saw this happening multiple times, and is never pleasant especially if you are using cassandra as a queue and it seems to me that you might be using it in your solution. I'll try to give some tips at the end of the answer.
I'm slightly worried about you setting the ttl dynamically depending on result. What would be the point of inserting the ttl-ed data that was successful and keeping forever the data that wasn't. I guess some sort of audit or something similar. Again this is a queue pattern, try to avoid this if possible. Also one thing to keep in mind is that you will almost always insert the data once in the beginning and then once again with the ttl should your processing be o.k.
Also getting all entries might be a bit tricky. For very moderate load 10-100 req/s this might be reasonable but if you have thousands per second getting all the requests every time might not be a good idea. At least not if you put them into single partition.
Separating the workload is also good idea. So yes using listenable future seems totally legit.
Setting clustering key to be timeuuid is usually the case with time series thata and I totally agree with you on this one.
In reality as I mentioned earlier you have to to take into account you will be saving 10 days worth of data (unless you tweak it) no matter what you do, it doesn't matter if you ttl it. It's still going to be ther, and every time cassandra will scan the partition will have to read the ttl-ed columns. In short this is just pain. I would seriously consider actually using something as kafka if I were you because what you are describing simply looks to me like a queue.
If you still want to stick with cassandra then please consider using buckets (adding date info to partitioning key and having a composite partitioning key). Depending on the load you are expecting you will have to bucket by month, week, day, hour even minutes. In some cases you might even want to add artificial columns to reduce load on the cluster. But then again this might be out of scope of this question.
Be very careful when using cassandra as a queue, it's a known antipattern. You can do it, but there are a lot of variables and it extremely depends on the load you are using. I once consulted a team that sort of went down the path of cassandra as a queue. Since basically using cassandra there was a must I recommended them bucketing the data by day (did some calculations that proved this is o.k. time unit) and I also had a look at this solution https://github.com/paradoxical-io/cassieq basically there are a lot of good stuff in this repo when using cassandra as a queue, data models etc. Basically this team had zombie rows, slow reading because of the tombstones etc. etc.
Also the way you described it it might happen that you have "hot rows" basically since you would just have one wide partition where all your data would go some nodes in the cluster might not even be that good utilised. This can be avoided by artificial columns.
When using cassandra as a queue it's very easy to mess a lot of things up. (But it's possible for moderate workloads)

How to store data in cassandra in a temporary location while sync is in progress?

We have a mysql server running which is serving application writes. To do some batch processing we have written a sync job to migrate data into cassandra cluster.
1. A daily sync job which transfers by updated timestamp for that day.
2. A complete sync job which transfers complete data, overriding existing ones.
Now there may be a possibility that the row was deleted from mysql, in that case using the above approach it will lie forever in cassandra.
To solve that problem we have given a TTL of 15 days for every row. So eventually it will get deleted, if it was not deleted then in next full sync the TTL will be over written again.
Its working fine as far as the use case is concerned but the issue is that in full sync complete data is over written and sstable is generated continuously with compactions happenning all the time, load averages shoot up with slowness and backup size increases (which could have been avoided).
Essentially we would want to replace the existing table data by new data but we dont want to truncate before starting the job but only after job completes.
Is there any way by which this can be solved other than creating a new table altogether and dropping past table when data is generated?
You can look at the double-run migration strategy I presented here: http://www.slideshare.net/doanduyhai/from-rdbms-to-cassandra-without-a-hitch
It has the advantage of allowing 100% uptime and possible rollback if things go wrong. The downside is the amount of work required in term of releases & codes

Disabling commitlog in Cassandra

When restarting a Cassandra node a lot of time is spend on replaying the commitlog to achieve consistency. In our application, it is more important to bring the node back up and running fast, than to achieve consistency. Therefore we have set “durable_writes = false” on all our manually created keyspaces to disable the commitlog. (We have not touched the system keyspaces). Nevertheless, when we restart a note it still uses about one hour on replaying the commitlog.
What is left in my commitlog?
Can I in any way investigate the content of the commitlog?
How can the commitlog be turned off (if not durable_writes = false)?
durable_writes is set per keyspace, so if there are any keyspaces with it still enabled there will still be mutations in the commitlogs to replay on startup. You may want to walk output of describe schema.
There are some tables (ie system) that you want to keep durable, but it shouldn't have that much to cause an impact to startup. When starting up it logs out which keyspace/tables its reading so you can check which ones its replaying.
One hour is a very long time and has a certain smell to it, there may be something else going on here and probably warrants additional investigation. Some ideas is to check the logs and make sure it is the commitlog replay thats taking time (not rebuilding index summaries or something). Also check that there are not old commit logs that C* doesn't have permissions to delete or something that would stick around.
do 'nodetool drain' before shutting down the node.This will write all the commitlogs to sstables.

Restoring cassandra from snapshot

So I did something of a test run/disaster recovery practice deleting a table and restoring in Cassandra via snapshot on a test cluster I have built.
This test cluster has four nodes, and I used the node restart method so after truncating the table in question, all nodes were shutdown, commitlog directories cleared, and the current snapshot data copied back into the table directory for each node. Afterwards, I brought each node back up. Then following the documentation I ran a repair on each node, followed by a refresh on each node.
My question is, why is it necessary for me to run a repair on each node afterwards assuming none of the nodes were down except when I shut them down to perform the restore procedure? (in this test instance it was a small amount of data and took very little time to repair, if this happened in our production environment the repairs would take about 12 hours to perform so this could be a HUGE issue for us in a disaster scenario).
And I assume running the repair would be completely unnecessary on a single node instance, correct?
Just trying to figure out what the purpose of running the repair and subsequent refresh is.
What is repair?
Repair is one of Cassandra's main anti-entropy mechanisms. Essentially it ensures that all your nodes have the latest version of all the data. The reason it takes 12 hours (this is normal by the way) is that it is an expensive operation -- io and CPU intensive -- to generate merkel trees for all your data, compare them with merkel trees from other nodes, and stream any missing / outdated data.
Why run a repair after a restoring from snapshots
Repair gives you a consistency baseline. For Example: If the snapshots weren't taken at the exact same time, you have a chance of reading stale data if you're using CL ONE and hit a replica restored from the older snapshot. Repair ensures all your replicas are up to date with the latest data available.
tl;dr:
repairs would take about 12 hours to perform so this could be a HUGE
issue for us in a disaster scenario).
While your repair is running, you'll have some risk of reading stale data if your snapshots don't have the same exact data. If they are old snapshots, gc_grace may have already passed for some tombstones giving you a higher risk of zombie data if tombstones aren't well propagated across your cluster.
Related side rant - When to run a repair?
The coloquial definition of the term repair seems to imply that your system is broken. We think "I have to run a repair? I must have done something wrong to get to this un-repaired state!" This is simply not true. Repair is a normal maintenance operation with Cassandra. In fact, you should be running repair at least every gc_grace seconds to ensure data consistency and avoid zombie data (or use the opscenter repair service).
In my opinion, we should have called it AntiEntropyMaintenence or CassandraOilChange or something rather than Repair : )

Resources