Can an aggregate be part of a domain-event? - domain-driven-design

Consider an aggregate with many properties. For example UserGroup. If I want to publish a UserGroupCreatedEvent I can do 2 things:
duplicate the properties from the just created UserGroup to
UserGroupCreatedEvent and copy their values. OR:
Refer to the new UserGroup within the UserGroupCreatedEvent
In many examples, like Axon's Contacts App, I've seen property duplication. I wonder why, and if in real-world CQRS applications, this is not a lot of overhead, and developers choose to refer the aggregate instead.

An event is a DTO and it's meant to cross boundaries. Including the aggregate directly has the following problems:
The aggregate is a concept that makes sense only in its own bounded context;
An event should contain only the relevant changes, not the whole state of the concept;
Because an event is a DTO, at one point it will be (de)serialized and that would be a technical problem with properly encapsulated objects;
Every component/context receiving handling the event would have a dependency of the component where the aggregate is defined;
These are the main reasons why a Domain Event should be just a flattened representation of the relevant state changes.
P.S: If you need to include the whole state in your event, maybe the events is improperly designed or you're dealing with a simple data structure. Usually an aggregate contains some value objects and/or encapsulates some business constraints.

An important property of domain events is that they are immutable. Bearing that in mind, the two possibilities you mention differ greatly:
Duplicating properties records their value at the time the UserGroup was created.
Referencing the UserGroup by ID just tells you that a UserGroup was created, but not the properties it had at the time. If the UserGroup has been deleted in the meantime, this means that the information is lost.
Which properties you copy depends on just that difference. Do you need to be able to look up e.g. the name of a UserGroup at its creation time? Add it as a property. If not (and if it's not expected that it ever will be required), don't.
Also, domain events have a global scope (i.e. they are meaningful outside of your BC), so you should include all information that clients outside of your BC need to make sense of the domain event.
Note that attaching the whole aggregate root object to a domain event violates the immutability rule of domain events, so this is most probably a bad idea.

Related

DDD - How to form Aggregates where Entities have to reference non-root Entities

I have some Entities and I am trying to follow Domain Driven Design practices to identify Aggregates. I somehow cant do this because I either break the rule of Entities not being allowed to reference non-root Entities of other Aggregates, or I cant form Aggregates at all.
I have the following Entities: Organisation, JobOffer, Candidate, and JobApplication.
An Organisation creates JobOffers but may only have a limited amount of active JobOffers.
A Candidate creates JobApplications but may only have a limited amount of active JobApplications.
A JobApplication references a JobOffer that it is meant for.
Based on that I have to know how many JobOffers an Organisation has before I can create a new one (enforcing limits), I assume Organisation should be an Root-Entity that owns JobOffers. The same applies to Candidates and JobApplications. Now I have two Aggregates: Organisation with JobOffers and Candidate with JobApplications. But... I need to reference JobOffer from JobApplication... and that breaks the rule that I cant reference non-Root-Entities.
I have looked for and found similar questions on this forum but I somehow still cant figure it out, so sorry in advance - I appreciate any help.
I general, you should avoid holding object references to other aggregates but rather reference other aggregates by id. In some cases it can be valid to reference some entity within in another aggregate, but again this should be done via id as well.
If you go this way you should reference a composite id. Aggregates are meant to depict logical boundaries and also transactional boundaries. Child entity ids which are modelled as part of the aggregate only need to be unique inside the boundaries of that aggregate. This makes it a lot easier to focus on stuff just inside those boundaries when performing actions in your system. Even if you are using UUIDs (or GUIDs), if you really need to reference a child entity of another aggregate - let's say you have good reasons for that - you should model the id graph via the aggregate root which means always knowing the id of the other aggregate in combination with the id of the entity you are interested in. That means referencing a composite id.
But: whenever I think I need to reference a child entity of another aggregate root at first I investigate this more deeply. This would mean that this child entity might be important as a stand-alone entity as well.
Did I miss to discover another aggregate root?
In your case, looking at your domain model diagram, I suspect JobOffer should be an aggregate on its own. Of course I don't know your domain but I can at least guess that there might be some transactions performed in your system allowing to mutate job offers on its own without requiring to consider organization specific business invariants. If this is the case, you should rethink the domain model and consider making JobOffer an aggregate root on its own. In this case your initial problem get's resolved automatically. Also note that modelling job offers as aggregates can make actions performed on organizations simpler as well as you do not need to load all the job offers for that organization when loading the organization aggregate. This might of course not be relevant in your case and really depends on the maximum amount of job offers for an organization.
So I think, depending on your business requirements and domain logic invariants I would recommd one of the folllwing two options:
Reference the foreign child entity only through a composite id including the id of other the aggregate + the child entity id (e.g. by creating some value object that represents this reference as a strong type)
Make JobOffer an aggregate on its own if the mentioned considerations hold true in your case

What is an Aggregate Root?

No, it is not a duplication question.
I have red many sources on the subject, but still I feel like I don't fully understand it.
This is the information I have so far (from multiple sources, be it articles, videos, etc...) about what is an Aggregate and Aggregate Root:
Aggregate is a collection of multiple Value Objects\Entity references and rules.
An Aggregate is always a command model (meant to change business state).
An Aggregate represents a single unit of (database - because essentialy the changes will be persisted) work, meaning it has to be consistent.
The Aggregate Root is the interface to the external world.
An Aggregate Root must have a globally unique identifier within the system
DDD suggests to have a Repository per Aggregate Root
A simple object from an aggregate can't be changed without its AR(Aggregate Root) knowing it
So with all that in mind, lets get to the part where I get confused:
in this site it says
The Aggregate Root is the interface to the external world. All interaction with an Aggregate is via the Aggregate Root. As such, an Aggregate Root MUST have a globally unique identifier within the system. Other Entites that are present in the Aggregate but are not Aggregate Roots require only a locally unique identifier, that is, an Id that is unique within the Aggregate.
But then, in this example I can see that an Aggregate Root is implemented by a static class called Transfer that acts as an Aggregate and a static function inside called TransferedRegistered that acts as an AR.
So the questions are:
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that its a function. what does have a globaly unique identifier is the Domain Event that this function produces.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function of the Aggregate class itself?
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier), then how can we interact with this Aggregate? the first article clearly stated that all interaction with an Aggregate is by the AR, if the AR is an event, then we can do nothing but react on it.
Is it right to say that the aggregate has two main jobs:
Apply the needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be raised in a Domain Event from the AR
Please correct me on any of the bullet points in the beginning if some/all of them are wrong is some way or another and feel free to add more of them if I have missed any!
Thanks for clarifying things out!
I feel like I don't fully understand it.
That's not your fault. The literature sucks.
As best I can tell, the core ideas of implementing solutions using domain driven design came out of the world of Java circa 2003. So the patterns described by Evans in chapters 5 and six of the blue book were understood to be object oriented (in the Java sense) domain modeling done right.
Chapter 6, which discusses the aggregate pattern, is specifically about life cycle management; how do you create new entities in the domain model, how does the application find the right entity to interact with, and so on.
And so we have Factories, that allow you to create instances of domain entities, and Repositories, that provide an abstraction for retrieving a reference to a domain entity.
But there's a third riddle, which is this: what happens when you have some rule in your domain that requires synchronization between two entities in the domain? If you allow applications to talk to the entities in an uncoordinated fashion, then you may end up with inconsistencies in the data.
So the aggregate pattern is an answer to that; we organize the coordinated entities into graphs. With respect to change (and storage), the graph of entities becomes a single unit that the application is allowed to interact with.
The notion of the aggregate root is that the interface between the application and the graph should be one of the members of the graph. So the application shares information with the root entity, and then the root entity shares that information with the other members of the aggregate.
The aggregate root, being the entry point into the aggregate, plays the role of a coarse grained lock, ensuring that all of the changes to the aggregate members happen together.
It's not entirely wrong to think of this as a form of encapsulation -- to the application, the aggregate looks like a single entity (the root), with the rest of the complexity of the aggregate being hidden from view.
Now, over the past 15 years, there's been some semantic drift; people trying to adapt the pattern in ways that it better fits their problems, or better fits their preferred designs. So you have to exercise some care in designing how to translate the labels that they are using.
In simple terms an aggregate root (AR) is an entity that has a life-cycle of its own. To me this is the most important point. One AR cannot contain another AR but can reference it by Id or some value object (VO) containing at least the Id of the referenced AR. I tend to prefer to have an AR contain only other VOs instead of entities (YMMV). To this end the AR is responsible for consistency and variants w.r.t. the AR. Each VO can have its own invariants such as an EMailAddress requiring a valid e-mail format. Even if one were to call contained classes entities I will call that semantics since one could get the same thing done with a VO. A repository is responsible for AR persistence.
The example implementation you linked to is not something I would do or recommend. I followed some of the comments and I too, as one commenter alluded to, would rather use a domain service to perform something like a Transfer between two accounts. The registration of the transfer is not something that may necessarily be permitted and, as such, the domain service would be required to ensure the validity of the transfer. In fact, the registration of a transfer request would probably be a Journal in an accounting sense as that is my experience. Once the journal is approved it may attempt the actual transfer.
At some point in my DDD journey I thought that there has to be something wrong since it shouldn't be so difficult to understand aggregates. There are many opinions and interpretations w.r.t. to DDD and aggregates which is why it can get confusing. The other aspect is, in IMHO, that there is a fair amount of design involved that requires some creativity and which is based on an understanding of the domain itself. Creativity cannot be taught and design falls into the realm of tacit knowledge. The popular example of tacit knowledge is learning to ride a bike. Now, we can read all we want about how to ride a bike and it may or may not help much. Once we are on the bike and we teach ourselves to balance then we can make progress. Then there are people who end up doing absolutely crazy things on a bike and even if I read how to I don't think that I'll try :)
Keep practicing and modelling until it starts to make sense or until you feel comfortable with the model. If I recall correctly Eric Evans mentions in the Blue Book that it may take a couple of designs to get the model closer to what we need.
Keep in mind that Mike Mogosanu is using a event sourcing approach but in any case (without ES) his approach is very good to avoid unwanted artifacts in mainstream OOP languages.
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that
its a function. what does have a globaly unique identifier is the
Domain Event that this function produces.
TransferNumber acts as natural unique ID; there is also a GUID to avoid the need a full Value Object in some cases.
There is no unique ID state in the computer memory because it is an argument but think about it; why you want a globaly unique ID? It is just to locate the root element and its (non unique ID) childrens for persistence purposes (find, modify or delete it).
Order A has 2 order lines (1 and 2) while Order B has 4 order lines (1,2,3,4); the unique identifier of order lines is a composition of its ID and the Order ID: A1, B3, etc. It is just like relational schemas in relational databases.
So you need that ID just for persistence and the element that goes to persistence is a domain event expressing the changes; all the changes needed to keep consistency, so if you persist the domain event using the global unique ID to find in persistence what you have to modify the system will be in a consistent state.
You could do
var newTransfer = New Transfer(TransferNumber); //newTransfer is now an AG with a global unique ID
var changes = t.RegisterTransfer(Debit debit, Credit credit)
persistence.applyChanges(changes);
but what is the point of instantiate a object to create state in the computer memory if you are not going to do more than one thing with this object? It is pointless and most of OOP detractors use this kind of bad OOP design to criticize OOP and lean to functional programming.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function
of the Aggregate class itself?
It is the function itself. You can read in the post:
AR is a role , and the function is the implementation.
An Aggregate represents a single unit of work, meaning it has to be consistent. You can see how the function honors this. It is a single unit of work that keeps the system in a consistent state.
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier),
then how can we interact with this Aggregate? the first article
clearly stated that all interaction with an Aggregate is by the AR, if
the AR is an event, then we can do nothing but react on it.
Answered above because the domain event is not the AR.
4 Is it right to say that the aggregate has two main jobs: Apply the
needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be
raised in a Domain Event from the AR
Yes; again, you can see how the static function honors this.
You could try to contat Mike Mogosanu. I am sure he could explain his approach better than me.

What is the purpose of child entity in Aggregate root?

[ Follow up from this question & comments: Should entity have methods and if so how to prevent them from being called outside aggregate ]
As the title says: i am not clear about what is the actual/precise purpose of entity as a child in aggregate?
According to what i've read on many places, these are the properties of entity that is a child of aggregate:
It has identity local to aggregate
It cannot be accessed directly but through aggregate root only
It should have methods
It should not be exposed from aggregate
In my mind, that translates to several problems:
Entity should be private to aggregate
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
So, why do we have an entity at all instead of Value Objects only? It seams much more convenient to have only value objects, all methods on aggregate and expose value objects (which we already do copying entity infos).
PS.
I would like to focus to child entity on aggregate, not collections of entities.
[UPDATE in response to Constantin Galbenu answer & comments]
So, effectively, you would have something like this?
public class Aggregate {
...
private _someNestedEntity;
public SomeNestedEntityImmutableState EntityState {
get {
return this._someNestedEntity.getState();
}
}
public ChangeSomethingOnNestedEntity(params) {
this._someNestedEntity.someCommandMethod(params);
}
}
You are thinking about data. Stop that. :) Entities and value objects are not data. They are objects that you can use to model your problem domain. Entities and Value Objects are just a classification of things that naturally arise if you just model a problem.
Entity should be private to aggregate
Yes. Furthermore all state in an object should be private and inaccessible from the outside.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
No. We don't expose information that is already available. If the information is already available, that means somebody is already responsible for it. So contact that object to do things for you, you don't need the data! This is essentially what the Law of Demeter tells us.
"Repositories" as often implemented do need access to the data, you're right. They are a bad pattern. They are often coupled with ORM, which is even worse in this context, because you lose all control over your data.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
The trick is, you don't have to. Every object (class) you create is there for a reason. As described previously to create an additional abstraction, model a part of the domain. If you do that, an "aggregate" object, that exist on a higher level of abstraction will never want to offer the same methods as objects below. That would mean that there is no abstraction whatsoever.
This use-case only arises when creating data-oriented objects that do little else than holding data. Obviously you would wonder how you could do anything with these if you can't get the data out. It is however a good indicator that your design is not yet complete.
Entity should be private to aggregate
Yes. And I do not think it is a problem. Continue reading to understand why.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to
save to db, for example)
No. Make your aggregates return the data that needs to be persisted and/or need to be raised in a event on every method of the aggregate.
Raw example. Real world would need more finegrained response and maybe performMove function need to use the output of game.performMove to build propper structures for persistence and eventPublisher:
public void performMove(String gameId, String playerId, Move move) {
Game game = this.gameRepository.load(gameId); //Game is the AR
List<event> events = game.performMove(playerId, move); //Do something
persistence.apply(events) //events contains ID's of entities so the persistence is able to apply the event and save changes usign the ID's and changed data wich comes in the event too.
this.eventPublisher.publish(events); //notify that something happens to the rest of the system
}
Do the same with inner entities. Let the entity return the data that changed because its method call, including its ID, capture this data in the AR and build propper output for persistence and eventPublisher. This way you do not need even to expose public readonly property with entity ID to the AR and the AR neither about its internal data to the application service. This is the way to get rid of Getter/Setters bag objects.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity
are duplicated on entity)
Sometimes the business rules, to check and apply, belongs exclusively to one entity and its internal state and AR just act as gateway. It is Ok but if you find this patter too much then it is a sign about wrong AR design. Maybe the inner entity should be the AR instead a inner entity, maybe you need to split the AR into serveral AR's (inand one the them is the old ner entity), etc... Do not be affraid about having classes that just have one or two methods.
In response of dee zg comments:
What does persistance.apply(events) precisely do? does it save whole
aggregate or entities only?
Neither. Aggregates and entities are domain concepts, not persistence concepts; you can have document store, column store, relational, etc that does not need to match 1 to 1 your domain concepts. You do not read Aggregates and entities from persitence; you build aggregates and entities in memory with data readed from persistence. The aggregate itself does not need to be persisted, this is just a possible implementation detail. Remember that the aggregate is just a construct to organize business rules, it's not a meant to be a representation of state.
Your events have context (user intents) and the data that have been changed (along with the ID's needed to identify things in persistence) so it is incredible easy to write an apply function in the persistence layer that knows, i.e. what sql instruction in case of relational DB, what to execute in order to apply the event and persist the changes.
Could you please provide example when&why its better (or even
inevitable?) to use child entity instead of separate AR referenced by
its Id as value object?
Why do you design and model a class with state and behaviour?
To abstract, encapsulate, reuse, etc. Basic SOLID design. If the entity has everything needed to ensure domain rules and invariants for a operation then the entity is the AR for that operation. If you need extra domain rules checkings that can not be done by the entity (i.e. the entity does not have enough inner state to accomplish the check or does not naturaly fit into the entity and what represents) then you have to redesign; some times could be to model an aggregate that does the extra domain rules checkings and delegate the other domain rules checking to the inner entity, some times could be change the entity to include the new things. It is too domain context dependant so I can not say that there is a fixed redesign strategy.
Keep in mind that you do not model aggregates and entities in your code. You model just classes with behaviour to check domain rules and the state needed to do that checkings and response whith the changes. These classes can act as aggregates or entities for different operations. These terms are used just to help to comunicate and understand the role of the class on each operation context. Of course, you can be in the situation that the operation does not fit into a entity and you could model an aggregate with a V.O. persistence ID and it is OK (sadly, in DDD, without knowing domain context almost everything is OK by default).
Do you wanna some more enlightment from someone that explains things much better than me? (not being native english speaker is a handicap for theese complex issues) Take a look here:
https://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-1
http://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-2
http://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-3
It has identity local to aggregate
In a logical sense, probably, but concretely implementing this with the persistence means we have is often unnecessarily complex.
We need a read only copy Value-Object to expose information from an
entity (at least for a repository to be able to read it in order to
save to db, for example)
Not necessarily, you could have read-only entities for instance.
The repository part of the problem was already addressed in another question. Reads aren't an issue, and there are multiple techniques to prevent write access from the outside world but still allow the persistence layer to populate an entity directly or indirectly.
So, why do we have an entity at all instead of Value Objects only?
You might be somewhat hastily putting concerns in the same basket which really are slightly different
Encapsulation of operations
Aggregate level invariant enforcement
Read access
Write access
Entity or VO data integrity
Just because Value Objects are best made immutable and don't enforce aggregate-level invariants (they do enforce their own data integrity though) doesn't mean Entities can't have a fine-tuned combination of some of the same characteristics.
These questions that you have do not exist in a CQRS architecture, where the Write model (the Aggregate) is different from a Read model. In a flat architecture, the Aggregate must expose read/query methods, otherwise it would be pointless.
Entity should be private to aggregate
Yes, in this way you are clearly expressing the fact that they are not for external use.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
The Repositories are a special case and should not be see in the same way as Application/Presentation code. They could be part of the same package/module, in other words they should be able to access the nested entities.
The entities can be viewed/implemented as object with an immutable ID and a Value object representing its state, something like this (in pseudocode):
class SomeNestedEntity
{
private readonly ID;
private SomeNestedEntityImmutableState state;
public getState(){ return state; }
public someCommandMethod(){ state = state.mutateSomehow(); }
}
So you see? You could safely return the state of the nested entity, as it is immutable. There would be some problem with the Law of Demeter but this is a decision that you would have to make; if you break it by returning the state you make the code simpler to write for the first time but the coupling increases.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
Yes, this protect the Aggregate's encapsulation and also permits the Aggregate to protect it's invariants.
I won't write too much. Just an example. A car and a gear. The car is the aggregate root. The gear is a child entity

Few confusing things about globally accessible Value Objects

Quotes are from DDD: Tackling Complexity in the Heart of Software ( pg. 150 )
a)
global search access to a VALUE is often meaningles, because finding a
VALUE by its properties would be equivalent to creating a new instance
with those properties. There are exceptions. For example, when I am
planning travel online, I sometimes save a few prospective itineraries
and return later to select one to book. Those itineraries are VALUES
(if there were two made up of the same flights, I would not care which
was which), but they have been associated with my user name and
retrieved for me intact.
I don't understand author's reasoning as for why it would be more appropriate to make Itinierary Value Object globally accessible instead of clients having to globally search for Customer root entity and then traverse from it to this Itinierary object?
b)
A subset of persistent objects must be globaly accessible through a
search based on object attributes ... They are usualy ENTITIES,
sometimes VALUE OBJECTS with complex internal structure ...
Why is it more common for Values Objects with complex internal structure to be globally accesible rather than simpler Value Objects?
c) Anyways, are there some general guidelines on how to determine whether a particular Value Object should be made globally accessible?
UPDATE:
a)
There is no domain reason to make an itinerary traverse-able through
the customer entity. Why load the customer entity if it isn't needed
for any behavior? Queries are usually best handled without
complicating the behavioral domain.
I'm probably wrong about this, but isn't it common that when user ( Ie Customer root entity ) logs in, domain model retrieves user's Customer Aggregate?
And if users have an option to book flights, then it would also be common for them to check from time to time the Itineraries ( though English isn't my first language so the term Itinerary may actually mean something a bit different than I think it means ) they have selected or booked.
And since Customer Aggregate is already retrieved from the DB, why issue another global search for Itinerary ( which will probably search for it in DB ) when it was already retrieved together with Customer Aggregate?
c)
The rule is quite simple IMO - if there is a need for it. It doesn't
depend on the structure of the VO itself but on whether an instance of
a particular VO is needed for a use case.
But this VO instance has to be related to some entity ( ie Itinerary is related to particular Customer ), else as the author pointed out, instead of searching for VO by its properties, we could simply create a new VO instance with those properties?
SECOND UPDATE:
a) From your link:
Another method for expressing relationships is with a repository.
When relationship is expressed via repository, do you implement a SalesOrder.LineItems property ( which I doubt, since you advise against entities calling repositories directly ), which in turns calls a repository, or do you implement something like SalesOrder.MyLineItems(IOrderRepository repo)? If the latter, then I assume there is no need for SalesOrder.LineItems property?
b)
The important thing to remember is that aggregates aren't meant to be
used for displaying data.
True that domain model doesn't care what upper layers will do with the data, but if not using DTO's between Application and UI layers, then I'd assume UI will extract the data to display from an aggregate ( assuming we sent to UI whole aggregate and not just some entity residing within it )?
Thank you
a) There is no domain reason to make an itinerary traverse-able through the customer entity. Why load the customer entity if it isn't needed for any behavior? Queries are usually best handled without complicating the behavioral domain.
b) I assume that his reasoning is that complex value objects are those that you want to query since you can't easily recreate them. This issue and all query related issues can be addressed with the read-model pattern.
c) The rule is quite simple IMO - if there is a need for it. It doesn't depend on the structure of the VO itself but on whether an instance of a particular VO is needed for a use case.
UPDATE
a) It is unlikely that a customer aggregate would have references to the customer's itineraries. The reason is that I don't see how an itinerary would be related to behaviors that would exist in the customer aggregate. It is also unnecessary to load the customer aggregate at all if all that is needed is some data to display. However, if you do load the aggregate and it does contain reference data that you need you may as well display it. The important thing to remember is that aggregates aren't meant to be used for displaying data.
c) The relationship between customer and itinerary could be expressed by a shared ID - each itinerary would have a customerId. This would allow lookup as required. However, just because these two things are related it does not mean that you need to traverse customer to get to the related entities or value objects for viewing purposes. More generally, associations can be implemented either as direct references or via repository search. There are trade-offs either way.
UPDATE 2
a) If implemented with a repository, there is no LineItems property - no direct references. Instead, to obtain a list of line items a repository is called.
b) Or you can create a DTO-like object, a read-model, which would be returned directly from the repository. The repository can in turn execute a simple SQL query to get all required data. This allows you to get to data that isn't part of the aggregate but is related. If an aggregate does have all the data needed for a view, then use that aggregate. But as soon as you have a need for more data that doesn't concern the aggregate, switch to a read-model.

How should I enforce relationships and constraints between aggregate roots?

I have a couple questions regarding the relationship between references between two aggregate roots in a DDD model. Refer to the typical Customer/Order model diagrammed below.
First, should references between the actual object implementation of aggregates always be done through ID values and not object references? For example if I want details on the customer of an Order I would need to take the CustomerId and pass it to a ICustomerRepository to get a Customer rather then setting up the Order object to return a Customer directly correct? I'm confused because returning a Customer directly seems like it would make writing code against the model easier, and is not much harder to setup if I am using an ORM like NHibernate. Yet I'm fairly certain this would be violating the boundaries between aggregate roots/repositories.
Second, where and how should a cascade on delete relationship be enforced for two aggregate roots? For example say I want all the associated orders to be deleted when a customer is deleted. The ICustomerRepository.DeleteCustomer() method should not be referencing the IOrderRepostiory should it? That seems like that would be breaking the boundaries between the aggregates/repositories? Should I instead have a CustomerManagment service which handles deleting Customers and their associated Orders which would references both a IOrderRepository and ICustomerRepository? In that case how can I be sure that people know to use the Service and not the repository to delete Customers. Is that just down to educating them on how to use the model correctly?
First, should references between aggregates always be done through ID values and not actual object references?
Not really - though some would make that change for performance reasons.
For example if I want details on the customer of an Order I would need to take the CustomerId and pass it to a ICustomerRepository to get a Customer rather then setting up the Order object to return a Customer directly correct?
Generally, you'd model 1 side of the relationship (eg., Customer.Orders or Order.Customer) for traversal. The other can be fetched from the appropriate Repository (eg., CustomerRepository.GetCustomerFor(Order) or OrderRepository.GetOrdersFor(Customer)).
Wouldn't that mean that the OrderRepository would have to know something about how to create a Customer? Wouldn't that be beyond what OrderRepository should be responsible for...
The OrderRepository would know how to use an ICustomerRepository.FindById(int). You can inject the ICustomerRepository. Some may be uncomfortable with that, and choose to put it into a service layer - but I think that's overkill. There's no particular reason repositories can't know about and use each other.
I'm confused because returning a Customer directly seems like it would make writing code against the model easier, and is not much harder to setup if I am using an ORM like NHibernate. Yet I'm fairly certain this would be violating the boundaries between aggregate roots/repositories.
Aggregate roots are allowed to hold references to other aggregate roots. In fact, anything is allowed to hold a reference to an aggregate root. An aggregate root cannot hold a reference to a non-aggregate root entity that doesn't belong to it, though.
Eg., Customer cannot hold a reference to OrderLines - since OrderLines properly belongs as an entity on the Order aggregate root.
Second, where and how should a cascade on delete relationship be enforced for two aggregate roots?
If (and I stress if, because it's a peculiar requirement) that's actually a use case, it's an indication that Customer should be your sole aggregate root. In most real-world systems, however, we wouldn't actually delete a Customer that has associated Orders - we may deactivate them, move their Orders to a merged Customer, etc. - but not out and out delete the Orders.
That being said, while I don't think it's pure-DDD, most folks will allow some leniency in following a unit of work pattern where you delete the Orders and then the Customer (which would fail if Orders still existed). You could even have the CustomerRepository do the work, if you like (though I'd prefer to make it more explicit myself). It's also acceptable to allow the orphaned Orders to be cleaned up later (or not). The use case makes all the difference here.
Should I instead have a CustomerManagment service which handles deleting Customers and their associated Orders which would references both a IOrderRepository and ICustomerRepository? In that case how can I be sure that people know to use the Service and not the repository to delete Customers. Is that just down to educating them on how to use the model correctly?
I probably wouldn't go a service route for something so intimately tied to the repository. As for how to make sure a service is used...you just don't put a public Delete on the CustomerRepository. Or, you throw an error if deleting a Customer would leave orphaned Orders.
Another option would be to have a ValueObject describing the association between the Order and the Customer ARs, VO which will contain the CustomerId and additional information you might need - name,address etc (something like ClientInfo or CustomerData).
This has several advantages:
Your ARs are decoupled - and now can be partitioned, stored as event streams etc.
In the Order ARs you usually need to keep the information you had about the customer at the time of the order creation and not reflect on it any future changes made to the customer.
In almost all the cases the information in the value object will be enough to perform the read operations ( display customer info with the order ).
To handle the Deletion/deactivation of a Customer you have the freedom to chose any behavior you like. You can use DomainEvents and publish a CustomerDeleted event for which you can have a handler that moves the Orders to an archive, or deletes them or whatever you need. You can also perform more than one operation on that event.
If for whatever reason DomainEvents are not your choice you can have the Delete operation implemented as a service operation and not as a repository operation and use a UOW to perform the operations on both ARs.
I have seen a lot of problems like this when trying to do DDD and i think that the source of the problems is that developers/modelers have a tendency to think in DB terms. You ( we :) ) have a natural tendency to remove redundancy and normalize the domain model. Once you get over it and allow your model to evolve and implicate the domain expert(s) in it's evolution you will see that it's not that complicated and it's quite natural.
UPDATE: and a similar VO - OrderInfo can be placed inside the Customer AR if needed, with only the needed information - order total, order items count etc.

Resources