How can I replace an Option within a Vec? - rust

Here's the code (I also put it in a playpen here: http://is.gd/f9O3YG):
use std::mem;
pub struct Tree {
children: Vec<Option<Box<Tree>>>,
// other fields
}
impl Tree {
pub fn mutate(&mut self, x: i64) {
if self.is_base_case() {
// base case
unimplemented!();
} else {
// recursive case
let idx: usize = unimplemented!();
let mut subtree: Option<&mut Box<Tree>> = self.children.get_mut(idx).expect("child idx out of bounds").as_mut();
match subtree {
Some(ref mut subtree) => unimplemented!(),
None => {
let mut new_tree = Tree::new();
// recurse on the new tree here
mem::replace(&mut subtree, Some(&mut Box::new(new_tree)));
},
}
}
}
pub fn new() -> Tree {
unimplemented!();
}
fn is_base_case(&self) -> bool {
unimplemented!();
}
}
fn main() {
println!("it compiled!");
}
I'm writing a data structure which is a type of tree. It stores its subtrees in a Vec<Option<Box<Tree>>>, since it's not guaranteed to have a subtree in every position. I'm trying to write a method which mutates the tree, possibly creating one of the subtrees if it doesn't exist.
As you can see if you try to run the code in the playpen, my approach doesn't work. I'm not sure what the error message is telling me - my best guess is that it wants the newly created subtree to have the same lifetime as the subtree created on line 14, in order for the replacement to be safe. However, I'm not sure how to make it have that lifetime. It also made me think: since the new subtree will also need to be valid for the entire lifetime of the data structure, shouldn't it have the same lifetime as the parent tree? It might need to be shorter though, since there are other methods which can remove subtrees (I'm using Option::take for that, which works well enough - I checked the documentation for an opposite of that and couldn't find one). Is my approach flawed, and if not, how should I fix my implementation?

You're trying to put an &mut inside some structure which lives longer than the thing &mut is pointing to. Here's a reduced example:
use std::mem;
pub struct Tree {
children: Vec<Option<Box<Tree>>>,
}
impl Tree {
pub fn mutate(&mut self, x: i64) {
let idx: usize = unimplemented!();
let mut subtree: Option<&mut Box<Tree>> =
self.children.get_mut(idx).unwrap().as_mut();
let mut new_tree = Tree::new();
mem::replace(&mut subtree, Some(&mut Box::new(new_tree)));
}
pub fn new() -> Tree {
unimplemented!();
}
}
fn main() {}
The problem is that &mut Box::new(...) is a temporary reference, so you can't just copy it into another structure. Your use of as_mut on the Option is confusing; if you just don't do it your code works fine:
let mut subtree: &mut Option<Box<Tree>> =
self.children.get_mut(idx).unwrap();
let mut new_tree = Tree::new();
mem::replace(subtree, Some(Box::new(new_tree)));
Here's it in the larger context. You can simplify it a bit, too.

Related

Custom link list pop_back implementation

I'm new to rust and try to understand &mut ref variables and mutability. I started creating a simple link list with pop_back function.
pub fn pop_back(&mut self) -> Option<T> {
let mut head = &mut self.head;
while let Some(v) = head {
if v.next.is_none() {
break;
}
head = &mut v.next;
}
head.take().map(|node| node.data)
}
but can't make it to work. error is cannot borrow *head as mutable more than once at a time.
How can I tell rust that I want to only change the reference in my loop not the value?
I don't want to add another tail variable to my list so without changing structure how can I make this work?
this is the struct definition
pub struct Node<T> {
data: T,
next: Option<Box<Node<T>>>
}
pub struct SimpleLinkedList<T> {
head: Option<Box<Node<T>>>,
}
This is a known limitation of the borrow checker. The next-gen Polonius will solve this.
In the meantime, the solution (without unsafe) is to repeat the calculation. In your case, this means some unwrap()s:
pub fn pop_back(&mut self) -> Option<T> {
let mut head = &mut self.head;
while head.is_some() {
if head.as_mut().unwrap().next.is_none() {
break;
}
head = &mut head.as_mut().unwrap().next;
}
head.take().map(|node| node.data)
}
See also:
Cannot borrow as mutable in loop
Returning a reference from a HashMap or Vec causes a borrow to last beyond the scope it's in?

How to assign new value to an Option<Box<_>> variable?

I am writing a tree in Rust and I want to implement a function:left which can turn a tree's root into the tree's root's left child.
Here is my code:
struct Node {
value: i32,
left: Option<Box<Node>>,
right: Option<Box<Node>>,
}
struct Tree {
root: Option<Box<Node>>,
}
enum Error {
DuplicateValue,
NotFound,
EmptyTree
}
impl Tree {
fn left(&mut self) -> Result<(), Error> {
match self.root {
Option::None => return Err(Error::EmptyTree),
Option::Some(ref mut node) => {
*node = node.left.as_ref().unwrap();
return Ok(())
}
}
}
}
and the error says
mismatched types
expected struct `Box<Node>`
found reference `&Box<Node>`
I have tried many methods and look up a lot of information but I still cannot fix this. I think it is a very simple thing in C, just like:
*root = *(root->left);
but why is it so hard in Rust? Can anyone help me?
Since your code looks like it throws away the whole right branch and the root node when calling left, i.e. you aren't concerned with the original root (it will be dropped after the assignment), you can simply take the left node out of the Option:
impl Tree {
fn left(&mut self) -> Result<(), Error> {
match self.root {
Option::None => Err(Error::EmptyTree),
Option::Some(ref mut node) => {
*node = node.left.take().unwrap();
Ok(())
}
}
}
}
Playground
Note however that this will panic if the left subtree is empty. If you want to make self empty in this case, you want to replace the whole Option, not the value inside it. In this case, you have to first do the matching, return early in the empty case, and only then, after the root is no longer borrowed, do the replacement:
impl Tree {
fn left(&mut self) -> Result<(), Error> {
let node = match self.root {
Option::None => return Err(Error::EmptyTree),
Option::Some(ref mut node) => node.left.take(),
};
self.root = node;
Ok(())
}
}
You probably want to replace the entire Option in self.root, not just the value inside the Some() (so that even when left is None, you don't panic but assign it to self.root).
The second problem you're facing is that you have to move the left branch out from the old root in order to be able to give its ownership to self.root. Normally, you wouldn't be able to do that, since you only have a mutable reference. Fortunately Option::take() is here to help: it lets you take ownership of a value in a &mut Option, changing it to None.
Now that you own the old tree, you can easily assign its left subtree to self.root.
Finally, instead of the match thing you had, you can just convert the Option into a Result via Option::ok_or() and short-circuit or extract the value with ?:
fn left(&mut self) -> Result<(), Error> {
let old_root = self.root.take().ok_or(Error::EmptyTree)?;
self.root = old_root.left;
Ok(())
}
Use clone() with #[derive(Clone)]
#[derive(Clone)]
struct Node {
value: i32,
left: Option<Box<Node>>,
right: Option<Box<Node>>,
}
struct Tree {
root: Option<Box<Node>>,
}
enum Error {
DuplicateValue,
NotFound,
EmptyTree
}
impl Tree {
fn left(&mut self) -> Result<(), Error> {
match self.root {
Option::None => return Err(Error::EmptyTree),
Option::Some(ref mut node) => {
*node = node.left.clone().unwrap();
return Ok(())
}
}
}
}

Rust struct within struct: borrowing, lifetime, generic types and more total confusion

I'm trying to modify an existing application that forces me to learn rust and it's giving me a hard time (reformulating...)
I would like to have a struct with two fields:
pub struct Something<'a> {
pkt_wtr: PacketWriter<&'a mut Vec<u8>>,
buf: Vec<u8>,
}
Where 'buf' will be used as an io for PacketWriter to write its results. So PacketWriter is something like
use std::io::{self};
pub struct PacketWriter<T :io::Write> {
wtr :T,
}
impl <T :io::Write> PacketWriter<T> {
pub fn new(wtr :T) -> Self {
return PacketWriter {
wtr,
};
}
pub fn into_inner(self) -> T {
self.wtr
}
pub fn write(&mut self) {
self.wtr.write_all(&[10,11,12]).unwrap();
println!("wrote packet");
}
}
Then inside 'Something' I want to use PacketWriter this way: let it write what it needs in 'buf' and drain it by pieces.
impl Something<'_> {
pub fn process(&mut self) {
self.pkt_wtr.write();
let c = self.buf.drain(0..1);
}
}
What seems to be impossible is to create a workable constructor for 'Something'
impl Something<'_> {
pub fn new() -> Self {
let mut buf = Vec::new();
let pkt_wtr = PacketWriter::new(&mut buf);
return Something {
pkt_wtr: pkt_wtr,
buf: buf,
};
}
}
What does not seem to be doable is, however I try, to have PacketWriter being constructed on a borrowed reference from 'buf' while 'buf' is also stored in the 'Something' object.
I can give 'buf' fully to 'PacketWriter' (per example below) but I cannot then access the content of 'buf' later. I know that it works in the example underneath, but it's because I can have access to the 'buf' after it is given to the "PacketWriter' (through 'wtr'). In reality, the 'PacketWriter' has that field (wtr) private and in addition it's a code that I cannot modify to, for example, obtain a getter for 'wtr'
Thanks
I wrote a small working program to describe the intent and the problem, with the two options
use std::io::{self};
pub struct PacketWriter<T :io::Write> {
wtr :T,
}
impl <T :io::Write> PacketWriter<T> {
pub fn new(wtr :T) -> Self {
return PacketWriter {
wtr,
};
}
pub fn into_inner(self) -> T {
self.wtr
}
pub fn write(&mut self) {
self.wtr.write_all(&[10,11,12]).unwrap();
println!("wrote packet");
}
}
/*
// that does not work of course because buf is local but this is not the issue
pub struct Something<'a> {
pkt_wtr: PacketWriter<&'a mut Vec<u8>>,
buf: Vec<u8>,
}
impl Something<'_> {
pub fn new() -> Self {
let mut buf = Vec::new();
let pkt_wtr = PacketWriter::new(&mut buf);
//let mut pkt_wtr = PacketWriter::new(buf);
return Something {
pkt_wtr,
buf,
};
}
pub fn process(&mut self) {
self.pkt_wtr.write();
println!("process {:?}", self.buf);
}
}
*/
pub struct Something {
pkt_wtr: PacketWriter<Vec<u8>>,
}
impl Something {
pub fn new() -> Self {
let pkt_wtr = PacketWriter::new(Vec::new());
return Something {
pkt_wtr,
};
}
pub fn process(&mut self) {
self.pkt_wtr.write();
let file = &mut self.pkt_wtr.wtr;
println!("processing Something {:?}", file);
let c = file.drain(0..1);
println!("Drained {:?}", c);
}
}
fn main() -> std::io::Result<()> {
let mut file = Vec::new();
let mut wtr = PacketWriter::new(&mut file);
wtr.write();
println!("Got data {:?}", file);
{
let c = file.drain(0..2);
println!("Drained {:?}", c);
}
println!("Remains {:?}", file);
let mut data = Something::new();
data.process();
Ok(())
}
It's not totally clear what the question is, given that the code appears to compile, but I can take a stab at one part: why can't you use into_inner() on self.wtr inside the process function?
into_inner takes ownership of the PacketWriter that gets passed into its self parameter. (You can tell this because the parameter is spelled self, rather than &self or &mut self.) Taking ownership means that it is consumed: it cannot be used anymore by the caller and the callee is responsible for dropping it (read: running destructors). After taking ownership of the PacketWriter, the into_inner function returns just the wtr field and drops (runs destructors on) the rest. But where does that leave the Something struct? It has a field that needs to contain a PacketWriter, and you just took its PacketWriter away and destroyed it! The function ends, and the value held in the PacketWriter field is unknown: it can't be thing that was in there from the beginning, because that was taken over by into_inner and destroyed. But it also can't be anything else.
Rust generally forbids structs from having uninitialized or undefined fields. You need to have that field defined at all times.
Here's the worked example:
pub fn process(&mut self) {
self.pkt_wtr.write();
// There's a valid PacketWriter in pkt_wtr
let raw_wtr: Vec<u8> = self.pkt_wtr.into_inner();
// The PacketWriter in pkt_wtr was consumed by into_inner!
// We have a raw_wtr of type Vec<u8>, but that's not the right type for pkt_wtr
// We could try to call this function here, but what would it do?
self.pkt_wtr.write();
println!("processing Something");
}
(Note: The example above has slightly squishy logic. Formally, because you don't own self, you can't do anything that would take ownership of any part of it, even if you put everything back neatly when you're done.)
You have a few options to fix this, but with one major caveat: with the public interface you have described, there is no way to get access to the PacketWriter::wtr field and put it back into the same PacketWriter. You'll have to extract the PacketWriter::wtr field and put it into a new PacketWriter.
Here's one way you could do it. Remember, the goal is to have self.packet_wtr defined at all times, so we'll use a function called mem::replace to put a dummy PacketWriter into self.pkt_wtr. This ensures that self.pkt_wtr always has something in it.
pub fn process(&mut self) {
self.pkt_wtr.write();
// Create a new dummy PacketWriter and swap it with self.pkt_wtr
// Returns an owned version of pkt_wtr that we're free to consume
let pkt_wtr_owned = std::mem::replace(&mut self.pkt_wtr, PacketWriter::new(Vec::new()));
// Consume pkt_wtr_owned, returning its wtr field
let raw_wtr = pkt_wtr_owned.into_inner();
// Do anything you want with raw_wtr here -- you own it.
println!("The vec is: {:?}", &raw_wtr);
// Create a new PacketWriter with the old PacketWriter's buffer.
// The dummy PacketWriter is dropped here.
self.pkt_wtr = PacketWriter::new(raw_wtr);
println!("processing Something");
}
Rust Playground
This solution is definitely a hack, and it's potentially a place where the borrow checker could be improved to realize that leaving a field temporarily undefined is fine, as long as it's not accessed before it is assigned again. (Though there may be an edge case I missed; this stuff is hard to reason about in general.) Additionally, this is the kind of thing that can be optimized away by later compiler passes through dead store elimination.
If this turns out to be a hotspot when profiling, there are unsafe techniques that would allow the field to be invalid for that period, but that would probably need a new question.
However, my recommendation would be to find a way to get an "escape hatch" function added to PacketWriter that lets you do exactly what you want to do: get a mutable reference to the inner wtr without taking ownership of PacketWriter.
impl<T: io::Write> PacketWriter<T> {
pub fn inner_mut(&mut self) -> &mut T {
&mut self.wtr
}
}
For clarification, I found a solution using Rc+RefCell or Arc+Mutex. I encapsulated the buffer in a Rc/RefCell and added a Write
pub struct WrappedWriter {
data :Arc<Mutex<Vec<u8>>>,
}
impl WrappedWriter {
pub fn new(data : Arc<Mutex<Vec<u8>>>) -> Self {
return WrappedWriter {
data,
};
}
}
impl Write for WrappedWriter {
fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
let mut data = self.data.lock().unwrap();
data.write(buf)
}
fn flush(&mut self) -> Result<(), Error> {
Ok(())
}
}
pub struct Something {
wtr: PacketWriter<WrappedWriter>,
data : Arc<Mutex<Vec<u8>>>,
}
impl Something {
pub fn new() -> Result<Self, Error> {
let data :Arc<Mutex<Vec<u8>>> = Arc::new(Mutex::new(Vec::new()));
let wtr = PacketWriter::new(WrappedWriter::new(Arc::clone(&data)));
return Ok(PassthroughDecoder {
wtr,
data,
});
}
pub fn process(&mut self) {
let mut data = self.data.lock().unwrap();
data.clear();
}
}
You can replace Arc by Rc and Mutex by RefCell if you don't have thread-safe issues in which case the reference access becomes
let data = self.data.borrow_mut();

Move a variable that is owned by &mut self to another thread without cloning/copying [duplicate]

I have a struct with a field:
struct A {
field: SomeType,
}
Given a &mut A, how can I move the value of field and swap in a new value?
fn foo(a: &mut A) {
let mut my_local_var = a.field;
a.field = SomeType::new();
// ...
// do things with my_local_var
// some operations may modify the NEW field's value as well.
}
The end goal would be the equivalent of a get_and_set() operation. I'm not worried about concurrency in this case.
Use std::mem::swap().
fn foo(a: &mut A) {
let mut my_local_var = SomeType::new();
mem::swap(&mut a.field, &mut my_local_var);
}
Or std::mem::replace().
fn foo(a: &mut A) {
let mut my_local_var = mem::replace(&mut a.field, SomeType::new());
}
If your type implements Default, you can use std::mem::take:
#[derive(Default)]
struct SomeType;
fn foo(a: &mut A) {
let mut my_local_var = std::mem::take(&mut a.field);
}
If your field happens to be an Option, there's a specific method you can use — Option::take:
struct A {
field: Option<SomeType>,
}
fn foo(a: &mut A) {
let old = a.field.take();
// a.field is now None, old is whatever a.field used to be
}
The implementation of Option::take uses mem::take, just like the more generic answer above shows, but it is wrapped up nicely for you:
pub fn take(&mut self) -> Option<T> {
mem::take(self)
}
See also:
Temporarily move out of borrowed content
Change enum variant while moving the field to the new variant

How do I efficiently build a vector and an index of that vector while processing a data stream?

I have a struct Foo:
struct Foo {
v: String,
// Other data not important for the question
}
I want to handle a data stream and save the result into Vec<Foo> and also create an index for this Vec<Foo> on the field Foo::v.
I want to use a HashMap<&str, usize> for the index, where the keys will be &Foo::v and the value is the position in the Vec<Foo>, but I'm open to other suggestions.
I want to do the data stream handling as fast as possible, which requires not doing obvious things twice.
For example, I want to:
allocate a String only once per one data stream reading
not search the index twice, once to check that the key does not exist, once for inserting new key.
not increase the run time by using Rc or RefCell.
The borrow checker does not allow this code:
let mut l = Vec::<Foo>::new();
{
let mut hash = HashMap::<&str, usize>::new();
//here is loop in real code, like:
//let mut s: String;
//while get_s(&mut s) {
let s = "aaa".to_string();
let idx: usize = match hash.entry(&s) { //a
Occupied(ent) => {
*ent.get()
}
Vacant(ent) => {
l.push(Foo { v: s }); //b
ent.insert(l.len() - 1);
l.len() - 1
}
};
// do something with idx
}
There are multiple problems:
hash.entry borrows the key so s must have a "bigger" lifetime than hash
I want to move s at line (b), while I have a read-only reference at line (a)
So how should I implement this simple algorithm without an extra call to String::clone or calling HashMap::get after calling HashMap::insert?
In general, what you are trying to accomplish is unsafe and Rust is correctly preventing you from doing something you shouldn't. For a simple example why, consider a Vec<u8>. If the vector has one item and a capacity of one, adding another value to the vector will cause a re-allocation and copying of all the values in the vector, invalidating any references into the vector. This would cause all of your keys in your index to point to arbitrary memory addresses, thus leading to unsafe behavior. The compiler prevents that.
In this case, there's two extra pieces of information that the compiler is unaware of but the programmer isn't:
There's an extra indirection — String is heap-allocated, so moving the pointer to that heap allocation isn't really a problem.
The String will never be changed. If it were, then it might reallocate, invalidating the referred-to address. Using a Box<[str]> instead of a String would be a way to enforce this via the type system.
In cases like this, it is OK to use unsafe code, so long as you properly document why it's not unsafe.
use std::collections::HashMap;
#[derive(Debug)]
struct Player {
name: String,
}
fn main() {
let names = ["alice", "bob", "clarice", "danny", "eustice", "frank"];
let mut players = Vec::new();
let mut index = HashMap::new();
for &name in &names {
let player = Player { name: name.into() };
let idx = players.len();
// I copied this code from Stack Overflow without reading the prose
// that describes why this unsafe block is actually safe
let stable_name: &str = unsafe { &*(player.name.as_str() as *const str) };
players.push(player);
index.insert(idx, stable_name);
}
for (k, v) in &index {
println!("{:?} -> {:?}", k, v);
}
for v in &players {
println!("{:?}", v);
}
}
However, my guess is that you don't want this code in your main method but want to return it from some function. That will be a problem, as you will quickly run into Why can't I store a value and a reference to that value in the same struct?.
Honestly, there's styles of code that don't fit well within Rust's limitations. If you run into these, you could:
decide that Rust isn't a good fit for you or your problem.
use unsafe code, preferably thoroughly tested and only exposing a safe API.
investigate alternate representations.
For example, I'd probably rewrite the code to have the index be the primary owner of the key:
use std::collections::BTreeMap;
#[derive(Debug)]
struct Player<'a> {
name: &'a str,
data: &'a PlayerData,
}
#[derive(Debug)]
struct PlayerData {
hit_points: u8,
}
#[derive(Debug)]
struct Players(BTreeMap<String, PlayerData>);
impl Players {
fn new<I>(iter: I) -> Self
where
I: IntoIterator,
I::Item: Into<String>,
{
let players = iter
.into_iter()
.map(|name| (name.into(), PlayerData { hit_points: 100 }))
.collect();
Players(players)
}
fn get<'a>(&'a self, name: &'a str) -> Option<Player<'a>> {
self.0.get(name).map(|data| Player { name, data })
}
}
fn main() {
let names = ["alice", "bob", "clarice", "danny", "eustice", "frank"];
let players = Players::new(names.iter().copied());
for (k, v) in &players.0 {
println!("{:?} -> {:?}", k, v);
}
println!("{:?}", players.get("eustice"));
}
Alternatively, as shown in What's the idiomatic way to make a lookup table which uses field of the item as the key?, you could wrap your type and store it in a set container instead:
use std::collections::BTreeSet;
#[derive(Debug, PartialEq, Eq)]
struct Player {
name: String,
hit_points: u8,
}
#[derive(Debug, Eq)]
struct PlayerByName(Player);
impl PlayerByName {
fn key(&self) -> &str {
&self.0.name
}
}
impl PartialOrd for PlayerByName {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for PlayerByName {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.key().cmp(&other.key())
}
}
impl PartialEq for PlayerByName {
fn eq(&self, other: &Self) -> bool {
self.key() == other.key()
}
}
impl std::borrow::Borrow<str> for PlayerByName {
fn borrow(&self) -> &str {
self.key()
}
}
#[derive(Debug)]
struct Players(BTreeSet<PlayerByName>);
impl Players {
fn new<I>(iter: I) -> Self
where
I: IntoIterator,
I::Item: Into<String>,
{
let players = iter
.into_iter()
.map(|name| {
PlayerByName(Player {
name: name.into(),
hit_points: 100,
})
})
.collect();
Players(players)
}
fn get(&self, name: &str) -> Option<&Player> {
self.0.get(name).map(|pbn| &pbn.0)
}
}
fn main() {
let names = ["alice", "bob", "clarice", "danny", "eustice", "frank"];
let players = Players::new(names.iter().copied());
for player in &players.0 {
println!("{:?}", player.0);
}
println!("{:?}", players.get("eustice"));
}
not increase the run time by using Rc or RefCell
Guessing about performance characteristics without performing profiling is never a good idea. I honestly don't believe that there'd be a noticeable performance loss from incrementing an integer when a value is cloned or dropped. If the problem required both an index and a vector, then I would reach for some kind of shared ownership.
not increase the run time by using Rc or RefCell.
#Shepmaster already demonstrated accomplishing this using unsafe, once you have I would encourage you to check how much Rc actually would cost you. Here is a full version with Rc:
use std::{
collections::{hash_map::Entry, HashMap},
rc::Rc,
};
#[derive(Debug)]
struct Foo {
v: Rc<str>,
}
#[derive(Debug)]
struct Collection {
vec: Vec<Foo>,
index: HashMap<Rc<str>, usize>,
}
impl Foo {
fn new(s: &str) -> Foo {
Foo {
v: s.into(),
}
}
}
impl Collection {
fn new() -> Collection {
Collection {
vec: Vec::new(),
index: HashMap::new(),
}
}
fn insert(&mut self, foo: Foo) {
match self.index.entry(foo.v.clone()) {
Entry::Occupied(o) => panic!(
"Duplicate entry for: {}, {:?} inserted before {:?}",
foo.v,
o.get(),
foo
),
Entry::Vacant(v) => v.insert(self.vec.len()),
};
self.vec.push(foo)
}
}
fn main() {
let mut collection = Collection::new();
for foo in vec![Foo::new("Hello"), Foo::new("World"), Foo::new("Go!")] {
collection.insert(foo)
}
println!("{:?}", collection);
}
The error is:
error: `s` does not live long enough
--> <anon>:27:5
|
16 | let idx: usize = match hash.entry(&s) { //a
| - borrow occurs here
...
27 | }
| ^ `s` dropped here while still borrowed
|
= note: values in a scope are dropped in the opposite order they are created
The note: at the end is where the answer is.
s must outlive hash because you are using &s as a key in the HashMap. This reference will become invalid when s is dropped. But, as the note says, hash will be dropped after s. A quick fix is to swap the order of their declarations:
let s = "aaa".to_string();
let mut hash = HashMap::<&str, usize>::new();
But now you have another problem:
error[E0505]: cannot move out of `s` because it is borrowed
--> <anon>:22:33
|
17 | let idx: usize = match hash.entry(&s) { //a
| - borrow of `s` occurs here
...
22 | l.push(Foo { v: s }); //b
| ^ move out of `s` occurs here
This one is more obvious. s is borrowed by the Entry, which will live to the end of the block. Cloning s will fix that:
l.push(Foo { v: s.clone() }); //b
I only want to allocate s only once, not cloning it
But the type of Foo.v is String, so it will own its own copy of the str anyway. Just that type means you have to copy the s.
You can replace it with a &str instead which will allow it to stay as a reference into s:
struct Foo<'a> {
v: &'a str,
}
pub fn main() {
// s now lives longer than l
let s = "aaa".to_string();
let mut l = Vec::<Foo>::new();
{
let mut hash = HashMap::<&str, usize>::new();
let idx: usize = match hash.entry(&s) {
Occupied(ent) => {
*ent.get()
}
Vacant(ent) => {
l.push(Foo { v: &s });
ent.insert(l.len() - 1);
l.len() - 1
}
};
}
}
Note that, previously I had to move the declaration of s to before hash, so that it would outlive it. But now, l holds a reference to s, so it has to be declared even earlier, so that it outlives l.

Resources