Functional Programming-Style Map Function that adds elements? - haskell

I know and love my filter, map and reduce, which happen to be part of more and more languages that are not really purely functional.
I found myself needing a similar function though: something like map, but instead of one to one it would be one to many.
I.e. one element of the original list might be mapped to multiple elements in the target list.
Is there already something like this out there or do I have to roll my own?

This is exactly what >>= specialized to lists does.
> [1..6] >>= \x -> take (x `mod` 3) [1..]
[1,1,2,1,1,2]
It's concatenating together the results of
> map (\x -> take (x `mod` 3) [1..]) [1..6]
[[1],[1,2],[],[1],[1,2],[]]

You do not have to roll your own. There are many relevant functions here, but I'll highlight three.
First of all, there is the concat function, which already comes in the Prelude (the standard library that's loaded by default). What this function does, when applied to a list of lists, is return the list that contains concatenated contents of the sublists.
EXERCISE: Write your own version of concat :: [[a]] -> [a].
So using concat together with map, you could write this function:
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f
...except that you don't actually need to write it, because it's such a common pattern that the Prelude already has it (at a more general type than what I show here—the library version takes any Foldable, not just lists).
Finally, there is also the Monad instance for list, which can be defined this way:
instance Monad [] where
return a = [a]
as >>= f = concatMap f as
So the >>= operator (the centerpiece of the Monad class), when working with lists, is exactly the same thing as concatMap.
EXERCISE: Skim through the documentation of the Data.List module. Figure out how to import the module into your code and play around with some of the functions.

Related

Would the ability to detect cyclic lists in Haskell break any properties of the language?

In Haskell, some lists are cyclic:
ones = 1 : ones
Others are not:
nums = [1..]
And then there are things like this:
more_ones = f 1 where f x = x : f x
This denotes the same value as ones, and certainly that value is a repeating sequence. But whether it's represented in memory as a cyclic data structure is doubtful. (An implementation could do so, but this answer explains that "it's unlikely that this will happen in practice".)
Suppose we take a Haskell implementation and hack into it a built-in function isCycle :: [a] -> Bool that examines the structure of the in-memory representation of the argument. It returns True if the list is physically cyclic and False if the argument is of finite length. Otherwise, it will fail to terminate. (I imagine "hacking it in" because it's impossible to write that function in Haskell.)
Would the existence of this function break any interesting properties of the language?
Would the existence of this function break any interesting properties of the language?
Yes it would. It would break referential transparency (see also the Wikipedia article). A Haskell expression can be always replaced by its value. In other words, it depends only on the passed arguments and nothing else. If we had
isCycle :: [a] -> Bool
as you propose, expressions using it would not satisfy this property any more. They could depend on the internal memory representation of values. In consequence, other laws would be violated. For example the identity law for Functor
fmap id === id
would not hold any more: You'd be able to distinguish between ones and fmap id ones, as the latter would be acyclic. And compiler optimizations such as applying the above law would not longer preserve program properties.
However another question would be having function
isCycleIO :: [a] -> IO Bool
as IO actions are allowed to examine and change anything.
A pure solution could be to have a data type that internally distinguishes the two:
import qualified Data.Foldable as F
data SmartList a = Cyclic [a] | Acyclic [a]
instance Functor SmartList where
fmap f (Cyclic xs) = Cyclic (map f xs)
fmap f (Acyclic xs) = Acyclic (map f xs)
instance F.Foldable SmartList where
foldr f z (Acyclic xs) = F.foldr f z xs
foldr f _ (Cyclic xs) = let r = F.foldr f r xs in r
Of course it wouldn't be able to recognize if a generic list is cyclic or not, but for many operations it'd be possible to preserve the knowledge of having Cyclic values.
In the general case, no you can't identify a cyclic list. However if the list is being generated by an unfold operation then you can. Data.List contains this:
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
The first argument is a function that takes a "state" argument of type "b" and may return an element of the list and a new state. The second argument is the initial state. "Nothing" means the list ends.
If the state ever recurs then the list will repeat from the point of the last state. So if we instead use a different unfold function that returns a list of (a, b) pairs we can inspect the state corresponding to each element. If the same state is seen twice then the list is cyclic. Of course this assumes that the state is an instance of Eq or something.

Type-safe difference lists

A common idiom in Haskell, difference lists, is to represent a list xs as the value (xs ++). Then (.) becomes "(++)" and id becomes "[]" (in fact this works for any monoid or category). Since we can compose functions in constant time, this gives us a nice way to efficiently build up lists by appending.
Unfortunately the type [a] -> [a] is way bigger than the type of functions of the form (xs ++) -- most functions on lists do something other than prepend to their argument.
One approach around this (as used in dlist) is to make a special DList type with a smart constructor. Another approach (as used in ShowS) is to not enforce the constraint anywhere and hope for the best. But is there a nice way of keeping all the desired properties of difference lists while using a type that's exactly the right size?
Yes!
We can view [a] as a free monad instance Free ((,) a) ().
Thus we can apply the scheme described by Edward Kmett in Free Monads for Less.
The type we'll get is
newtype F a = F { runF :: forall r. (() -> r) -> ((a, r) -> r) -> r }
or simply
newtype F a = F { runF :: forall r. r -> (a -> r -> r) -> r }
So runF is nothing else than the foldr function for our list!
This is called the Boehm-Berarducci encoding and it's isomorphic to the original data type (list) — so this is as small as you can possibly get.
Will Ness says:
So this type is still too "wide", it allows more than just prefixing - doesn't constrain the g function argument.
If I understood his argument correctly, he points out that you can apply the foldr (or runF) function to something different from [] and (:).
But I never claimed that you can use foldr-encoding only for concatenation. Indeed, as this name implies, you can use it to calculate any fold — and that's what Will Ness demonstrated.
It may become more clear if you forget for a moment that there's one true list type, [a]. There may be lots of list types — e.g. I can define one by
data List a = Nil | Cons a (List a)
It's be different from, but isomorphic to [a].
The foldr-encoding above is just yet another encoding of lists, like List a or [a]. It is also isomorphic to [a], as evidenced by functions \l -> F (\a f -> foldr a f l) and \x -> runF [] (:) and the fact that their compositions (in either order) is identity. But you are not obliged to convert to [a] — you can convert to List directly, using \x -> runF x Nil Cons.
The important point is that F a doesn't contain an element that is not the foldr functions for some list — nor does it contain an element that is the foldr functions for more than one list (obviously).
Thus, it doesn't contain too few or too many elements — it contains precisely as many elements as needed to exactly represent all lists.
This is not true of the difference list encoding — for example, the reverse function is not an append operation for any list.

How do I split a list of tuples into two lists in haskell using the map function?

This is for homework due yesterday but I do not want the answer just a point to the right direction please;)
I am trying to implement the unzip function using map and lambda with haskell.
:t unzip
[(a,b)] -> ([a],[b])
and so I am thinking that the lambda would look like \(a,b)->([a],[b]) and that sort of works except I am getting from my input of [(4,5),(7,5),(9,7)] =>
[([4],[5]),([7],[5]),([9],[7])] but I would have liked to have seen [4,7,9],[5,5,7]. So what am I doing wrong here?
Thanks in advance for pointing me in the right direction
Well, map :: (a -> b) -> ([a] -> [b]) returns a list, right? And you want your function to return two lists, so... you'll need to use map twice. Here's a skeleton for you to fill in:
unzip xs = (map {- ??? -} xs, map {- ??? -} xs)
Unfortunately, insisting on using map is inefficient, because it means you must make two passes over the list. You can do a bit better, but it's tricky! Give it a shot, then see how well you did by comparing it with GHC's implementation.
you can not implement unzip in a single map
\(a,b)->([a],[b]) :: (a,b) -> ([a],[b])
so
map \(a,b)->([a],[b]) :: [(a,b)] -> [([a],[b])]
instead you need two maps
unzip ls = (map ???,map ???)
fill in the blanks

Folding across Maybes in Haskell

In an attempt to learn Haskell, I have come across a situation in which I wish to do a fold over a list but my accumulator is a Maybe. The function I'm folding with however takes in the "extracted" value in the Maybe and if one fails they all fail. I have a solution I find kludgy, but knowing as little Haskell as I do, I believe there should be a better way. Say we have the following toy problem: we want to sum a list, but fours for some reason are bad, so if we attempt to sum in a four at any time we want to return Nothing. My current solution is as follows:
import Maybe
explodingFourSum :: [Int] -> Maybe Int
explodingFourSum numberList =
foldl explodingFourMonAdd (Just 0) numberList
where explodingFourMonAdd =
(\x y -> if isNothing x
then Nothing
else explodingFourAdd (fromJust x) y)
explodingFourAdd :: Int -> Int -> Maybe Int
explodingFourAdd _ 4 = Nothing
explodingFourAdd x y = Just(x + y)
So basically, is there a way to clean up, or eliminate, the lambda in the explodingFourMonAdd using some kind of Monad fold? Or somehow currying in the >>=
operator so that the fold behaves like a list of functions chained by >>=?
I think you can use foldM
explodingFourSum numberList = foldM explodingFourAdd 0 numberList
This lets you get rid of the extra lambda and that (Just 0) in the beggining.
BTW, check out hoogle to search around for functions you don't really remember the name for.
So basically, is there a way to clean up, or eliminate, the lambda in the explodingFourMonAdd using some kind of Monad fold?
Yapp. In Control.Monad there's the foldM function, which is exactly what you want here. So you can replace your call to foldl with foldM explodingFourAdd 0 numberList.
You can exploit the fact, that Maybe is a monad. The function sequence :: [m a] -> m [a] has the following effect, if m is Maybe: If all elements in the list are Just x for some x, the result is a list of all those justs. Otherwise, the result is Nothing.
So you first decide for all elements, whether it is a failure. For instance, take your example:
foursToNothing :: [Int] -> [Maybe Int]
foursToNothing = map go where
go 4 = Nothing
go x = Just x
Then you run sequence and fmap the fold:
explodingFourSum = fmap (foldl' (+) 0) . sequence . foursToNothing
Of course you have to adapt this to your specific case.
Here's another possibility not mentioned by other people. You can separately check for fours and do the sum:
import Control.Monad
explodingFourSum xs = guard (all (/=4) xs) >> return (sum xs)
That's the entire source. This solution is beautiful in a lot of ways: it reuses a lot of already-written code, and it nicely expresses the two important facts about the function (whereas the other solutions posted here mix those two facts up together).
Of course, there is at least one good reason not to use this implementation, as well. The other solutions mentioned here traverse the input list only once; this interacts nicely with the garbage collector, allowing only small portions of the list to be in memory at any given time. This solution, on the other hand, traverses xs twice, which will prevent the garbage collector from collecting the list during the first pass.
You can solve your toy example that way, too:
import Data.Traversable
explodingFour 4 = Nothing
explodingFour x = Just x
explodingFourSum = fmap sum . traverse explodingFour
Of course this works only because one value is enough to know when the calculation fails. If the failure condition depends on both values x and y in explodingFourSum, you need to use foldM.
BTW: A fancy way to write explodingFour would be
import Control.Monad
explodingFour x = mfilter (/=4) (Just x)
This trick works for explodingFourAdd as well, but is less readable:
explodingFourAdd x y = Just (x+) `ap` mfilter (/=4) (Just y)

How would you (re)implement iterate in Haskell?

iterate :: (a -> a) -> a -> [a]
(As you probably know) iterate is a function that takes a function and starting value. Then it applies the function to the starting value, then it applies the same function to the last result, and so on.
Prelude> take 5 $ iterate (^2) 2
[2,4,16,256,65536]
Prelude>
The result is an infinite list. (that's why I use take).
My question how would you implement your own iterate' function in Haskell, using only the basics ((:) (++) lambdas, pattern mataching, guards, etc.) ?
(Haskell beginner here)
Well, iterate constructs an infinite list of values a incremented by f. So I would start by writing a function that prepended some value a to the list constructed by recursively calling iterate with f a:
iterate :: (a -> a) -> a -> [a]
iterate f a = a : iterate f (f a)
Thanks to lazy evaluation, only that portion of the constructed list necessary to compute the value of my function will be evaluated.
Also note that you can find concise definitions for the range of basic Haskell functions in the report's Standard Prelude.
Reading through this list of straightforward definitions that essentially bootstrap a rich library out of raw primitives can be very educational and eye-opening in terms of providing a window onto the "haskell way".
I remember a very early aha moment on reading: data Bool = False | True.

Resources