What's the meaning of "magic" pragma in nim? - nim-lang

When going through the code in Nim project itself, I find that some proc decorated by "magic" pragma misses proc definition (example). There's no doc to explain the pragma, I guess the proc's definition is somewhere else and is merged while compiling.But I cannot still find the definition by searching the whole project.
Do I misunderstand the "magic" pragma? What's the meaning of it? And how to use it?

The {.magic.} pragma is used to define built-in operations and types, i.e. anything that requires compiler magic in order to work (hence the name). It is not intended to be used outside the system modules.

Related

What does "special compiler magic" mean?

In the Nim system module it says:
Most of the routines listed here use special compiler magic.
What do they mean by "special compiler magic"?
Generally it means that the implementations of the routines in that module cannot be expressed in the source language itself. I.e. the compiler recognizes a special set of names and either uses special semantics or compiles in hand-written assembly, etc. The notice is usually to prevent someone from trying to reason about how the interface could be written in the language itself.

Haskell without types

Is it possible to disable or work around the type system in Haskell? There are situations where it is convenient to have everything untyped as in Forth and BCPL or monotyped as in Mathematica. I'm thinking along the lines of declaring everything as the same type or of disabling type checking altogether.
Edit: In conformance with SO principles, this is a narrow technical question, not a request for discussion of the relative merits of different programming approaches. To rephrase the question, "Can Haskell be used in a way such that avoidance of type conflicts is entirely the responsibility of the programmer?"
Also look at Data.Dynamic which allows you to have dynamically typed values in parts of your code without disabling type-checking throughout.
GHC 7.6 (not released yet) has a similar feature, -fdefer-type-errors:
http://hackage.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
It will defer all type errors until runtime. It's not really untyped but it allows almost as much freedom.
Even with fdefer-type-errors one wouldn't be avoiding the type system. Nor does it really allow type independence. The point of the flag is to allow code with type errors to compile, so long as the errors are not called by the Main function. In particular, any code with a type error, when actually called by a Haskell interpreter, will still fail.
While the prospect of untyped functions in Haskell might be tempting, it's worth noting that the type system is really at the heart of the language. The code proves its own functionality in compilation, and the rigidity of the type system prevents a large number of errors.
Perhaps if you gave a specific example of the problem you're having, the community could address it. Interconverting between number types is something that I've asked about before, and there are a number of good tricks.
Perhaps fdefer-type-errors combined with https://hackage.haskell.org/package/base-4.14.1.0/docs/Unsafe-Coerce.html offers what you need.

Trying to use a function in Data.Map.hs but it says not in scope ... Is it because of #if defined(TESTING)

In Data.Map there are some functions like merge, glue, that I want to use but the compiler says they're not in scope. I notice at the top they are listed here:
#if defined(TESTING)
-- * Internals
, bin
, balanced
, join
, merge
#endif
I think this means I can't use them directly unless I've somehow defined TESTING but I've no clue how to do that and where. Please answer as if I'm retarded; don't assume I know you mean to type something in the command line instead of typing it in the program.
I'm on Windows XP and using GHCi if it matters.
You can't. These functions are only meant to be used by the library's internal tests. TESTING is determined at compile-time, so you couldn't change it even if you wanted to.
The internal tree structure of the map shouldn't be relevant to someone using the code, so it's difficult to say what would be a better solution without some concrete information about what you're trying to do.

Importing modules as a function, with string as input

I want to make a function called 'load' which imports definitions of functions from another file. I know how to import modules, but in my program I want the definitions of the functions to change depending on which module is 'loaded' with this new function. Is there a way to do this? Is there a better way to write my program so that this is not necessary?
I think it's type signature would look something like:
load :: String -> IO ()
where the string is the name of the module to be loaded (and the module is in the same directory).
Edit: Thanks for all the replies. Most people agree that this is not the best way to do what I want. Instead, is there a way to declare a global variable from within an I/O program. That is, I want it so that if I type (function "thing") into a function of type String -> IO(), I can still type 'thing' into GHCi to get the value assigned to it... Any suggestions?
There is almost certainly a better way to write your program so that this is not necessary. It's hard to say what without knowing more details about your situation, though. You could, for instance, represent the generic interface each module implements as a data-type, and have each module export a value of that type with the implementation.
Basically, the set of loaded modules is a static, compile-time property, so it makes no sense to want your program's behaviour to change based on its contents. Are you trying to write a library? Your users probably won't appreciate it doing such evil magic to their import lists :) (And it probably isn't possible without Template Haskell in that case, anyway.)
The exception is if you're trying to implement a Haskell tool (e.g. REPL, IDE, etc.) or trying to do plugins; i.e. dynamically-loaded modules of Haskell source code to integrate into your Haskell program. The first thing to try for those should be hint, but you may find you need something more advanced; in that case, the GHC API is probably your best bet. plugins used to be the de-facto standard in this area, but it doesn't seem to compile with GHC 7; you might want to check out direct-plugins, a simplified implementation of a similar interface that does.
mueval might be relevant; it's designed for executing short (one-line) snippets of Haskell code in a safe sandbox, as used by lambdabot.
Unless you're building a Haskell IDE or something like that, you most likely don't need this (^1).
But, in the case you do, there is always the hint-package, which allows you to embed a haskell interpreter into your program. This allows you to both load haskell modules and to convert strings into haskell values at runtime. There is a nice example of how to use it here
^1: If you're looking for a way to make things polymorphic, i.e. changing some, but not all definitions of in your code, you're probably looking for typeclasses.
With regards to your edit, perhaps you might be interested in IORef.

why do some languages require function to be declared in code before calling?

Suppose you have this pseudo-code
do_something();
function do_something(){
print "I am saying hello.";
}
Why do some programming languages require the call to do_something() to appear below the function declaration in order for the code to run?
Programming languages use a symbol table to hold the various classes, functions, etc. that are used in the source code. Some languages compile in a single pass, whereby the symbols are pulled out of the symbol table as soon as they are used. Others use two passes, where the first pass is used to populate the table, and then the second is used to find the entries.
Most languages with a static type system are designed to require definition before use, which means there must be some sort of declaration of a function before the call so that the call can be checked (e.g., is the function getting the right number and types of arguments). This sort of design helps both a person and a compiler reading the program: everything you see has already been defined. The ease of reading and the popularity of one-pass compilers may explain the popularity of this design rule.
Unfortunately definition before use does not play well with mutual recursion, and so language designers resorted to an ugly hack whereby you have
Declaration (sometimes called a "forward declaration" from the keyword in Pascal)
Use
Definition
You see the same phenomenon at the type level in C in the form of the "incomplete struct declaration."
Around 1990 some language designers figured out that the one-pass compiler with no abstract-syntax tree should be a thing of the past, and two very nice designs from that era—Modula-3 and Haskell got rid of definition before use: in those languages, any defined function or variable is visible throughout its scope, including parts of the program textually before the definition. In other words, mutual recursion is the default for both types and functions. Good on them, I say—these languages have no ugly and unnecessary forward declarations.
Why [have definition before use]?
Easy to write a one-pass compiler in 1975.
without definition before use, you have to think harder about mutual recursion, especially mutually recursive type definitions.
Some people think it makes it easier for a person to read the code.

Resources