what is the Operating Mode of the EnOcean Occupancy Sensor - sensors

I have the following Occupancy sensor: [1]
I am confused about its operating behaviour:
1) I read it its document [2]
that it behaves like the following:
*Occupancy Detection and Transmission: If a sensor is already in the occupied mode and continues to detect occupancy it will transmit an occupied telegram every two minutes until occupancy is not detected.
*Unoccupied Transmission: If after sending an occupied telegram a sensor does not detect occupancy for 10 minutes, an unoccupied telegram will be sent.
2) However, in the document of EEP specification [3]
under its EEP profil A5.07.01
a note telling that "The transmission of “PIR off” telegrams is optional"
which mean as I understood that the transmission of the unoccupied message is optional.
3) And in my application, I don't receive the “PIR off” (unoccupied message) as specified in the EEP specification.
-> I don't know if it is a normal behaviour what I get in my application or if there is some configuration that enable the behaviour listed above (in point 1).
Thanks in advance for your help!
[1] https://www.enocean.com/en/enocean_modules/ceiling-mounted-occupancy-sensor-eosc-oem/
[2] https://www.enocean.com/en/enocean_modules/EnOcean_Occupancy_Sensor_Operational_Description_v1.1_05.pdf
[3] http://domotique-info.fr/wp-content/uploads/2014/11/domotique-info-enocean_equipment_profiles_eep_v2.61_public.pdf

Related

Does IPC guarantee message order in Linux?

I need to create a monitor, which will log information about packet missing using ZeroMQ ipc. Actually I don't really understand everything about it because of there are some LINX, TIPS protocols also. Can you please explain me that and answer the main question?
You could make the application self-monitoring, by including a message serial number in each message structure. The message sender keeps track of the serial number it last sent, and increments it every time it sends a message.
The recipient should then be receiving messages with ever-increasing message serial numbers embedded. If that ever jumps by 2 or more, a message has gone missing.
IPC is not lossy like a network can be - the bytes put in come out the other end. TCP is not lossy either, provided both ends are still running and the network itself hasn't failed. However, depending on the ZMQ pattern used and how it's set up whole messages can be undelivered (for example, if the recipient hasn't connected yet, etc). If that's what you mean by "packet missing", it would be revealed by including an incrementing message serial number.

pcm capture using alsa

I'm new in alsa sound programming. I'm developing an application to record the audio in to a wav file in c language. I did some research on net but still not very clear about many topics. Please help.
This is the configuration I'm setting.
access : SND_PCM_ACCESS_RW_INTERLEAVED
format: S16_LE
rate: 16000
channel: 1
I have few doubts:
I'm highly confused between the period size and period time settings.
What is the difference between snd_pcm_hw_params_set_period_time_near() and snd_pcm_hw_params_set_period_size_near(). Which API should be called for capture? Similarly there is snd_pcm_hw_params_set_buffer_time_near() and snd_pcm_hw_params_set_buffer_size_near(). How to decide between these two APIs?
How to decide the period size value? I believe the same value is used in snd_pcm_sw_params_set_avail_min() call.
What value should be used for number of frames to be read in snd_pcm_readi()?
What is the importance of snd_pcm_sw_params_set_avail_min() and snd_pcm_start_threshold() APIs? Is it a must to call those
I'm referring the arecord implementation and another example code for capture.
Thanks in advance.
The period time describes the same parameter as the period size. It might be useful if the rate is not yet known.
You get interrupts (i.e., the opportunity to get woken up if you're waiting for data) at the end of each period. If you know how much data you want to read each time, try to use that as period size.
Read as many frames as you want to process.
The avail_min parameter specifies how many frames must be available before an interrupt results in you application actually being waken up.
The start threshold specifies that the device starts automatically when you try to read that many frames.

BLE: Max number of packets in Connection interval

Is there a limit on maximum number of packets (LE_DATA) that could be send by either slave or master during one connection interval?
If this limit exists, are there any specific conditions for this limit (e.g. only x number of ATT data packets)?
Are master/slave required or allowed to impose such a limit by specification?
(I hope I'm not reviving a dead post. But I think the section 4.5.1 is better suited to answer this than 4.5.6.)
The spec doesn't define a limit of packets. It just states the following:
4.5.1 Connection Events - BLUETOOTH SPECIFICATION Version 4.2 [Vol 6, Part B]
(...)
The start of a connection event is called an anchor point. At the anchor point, a master shall start to transmit a Data Channel PDU to the slave. The start of connection events are spaced regularly with an interval of connInterval and shall not overlap. The master shall ensure that a connection event closes at least T_IFS before the anchor point of the next connection event. The slave listens for the packet sent by its master at the anchor point.
T_IFS is the "Inter Frame Space" time and shall be 150 μs. Simply put it's the job of the master to solve this problem. As far as I know iOS limits the packet number to 4 per connection event for instance. Android may have other hard coded limits depending on the OS version.
There is max data rate that can be achieved both on BT and BLE. You can tweak this data rate by changing MTU (maximum transmission unit - packet size) up to max MTU both ends of transmission can handle. But AFAIK there is no straight constraint on number of packets, besides physical ones imposed by the data rate.
You can find more in the spec
I could find the following in Bluetooth Spec v4.2:
4.5.6 Closing Connection Events
The MD bit of the Header of the Data Channel PDU is used to indicate
that the device has more data to send. If neither device has set the
MD bit in their packets, the packet from the slave closes the
connection event. If either or both of the devices have set the MD
bit, the master may continue the connection event by sending another
packet, and the slave should listen after sending its packet. If a
packet is not received from the slave by the master, the master will
close the connection event. If a packet is not received from the
master by the slave, the slave will close the connection event.
Two consecutive packets received with an invalid CRC match within a
connection event shall close the event.
This means both slave and masters have self-imposed limit on number of packets they want to transmit during a CI. When either party doesn't wish to send more data, they just set this bit to 0 and other one understands. This should usually be driven by number of pending packets on either side.
Since I was looking for logical limits due to spec or protocol, this probably answers my question.
Physical limits to number packets per CI would be governed by data rate, and as #morynicz mentioned, on MTU etc.
From my understanding, the limit is: min{max master event length, max slave event length, connection interval}.
To clarify, both the master and slave devices (specifically, the BLE stack thereof) typically have event length or "GAP event length" times. This time limit may be used to allow a central and/or advertiser and/or broadcaster to schedule the "phase offset" of more than one BLE radio activity, and/or limit the CPU usage of the BLE stack for application processing needs. E.g. a Nordic SoftDevice stack may have a default event length of 3.75ms that is indefinitely extendable (up to the connection interval) based on other demands on the SoftDevice's scheduler. In Android and iOS BLE implementations, this value may be opaque or not specified (e.g. Android may set this value to "0", which leaves the decision up to the controller implementation associated with the BLE chip of that device).
Note also that either the master or the slave may effectively "drop out" of a connection event earlier than these times if their TX/RX buffers are filled (e.g. Nordic SoftDevice stack may have a buffer size of 6 packets/frames). This may be implemented by not setting the MD bit (if TX buffer is exhausted) and/or "nacking" with the NESN bit (if RX buffer is full). However, while the master device can actually "drop out" by ending the connection event (not sending any more packets), the slave device must listen for master packets as long as at least one of master and slave have the MD bit set and the master continues to transmit packets (e.g. the slave could keep telling the master that it has no more data and also keep NACKing master packets because it has no more buffer space for the current connection event, but the master may keep trying to send for as long as it wants during the connection interval; not sure how/if the controller stack implements any "smarts" regarding this).
If there are no limits from either device in terms of stack-specified event length or buffer size, then presumably packets could be transmitted back and forth the entire connection interval (assuming at least one side had data to send and therefore set the MD bit). Just note for throughput calculation purposes that there is a T_IFS spacing (currently specified at 150us) between each packet and before the end of the connection interval.

CAN Protocol related query

As per the definition of the 'Bit error' by protocol developer organization - Bosch : A bit error is detected at the bit time when the bit value monitored by the trasmitter is not the same as the bit actually transmitted by it.
For example, consider a practical scenario on the CAN bus : There are 2 CAN nodes A and B with an Identifier each to transmit on the bus. These 2 nodes start to transmit their respective CAN IDs on the bus and the arbitration mechanism begins. After the Arbitarion is done with, the node with the HIGH priority CAN ID will get the CAN bus access to continue transmission of remaining bits of its CAN frame. The other node [or any other nodes which might be present] on the bus become the receivers of that CAN frame and do not attempt to transmit anything during this time.
Question : If during this time , there is only 1 node which is transmitting and all other nodes are in receive mode, how can a bit error occur ?
1] Could a bit error occur because of a disturbance / EMI effect on the bus line ?
2] Could the sampling and iterpretation of bit sent by the node become faulty at the chip level, leading the CAN chip itself to detect it as a bit error ?
3] Any other reason leading to this ?
Bit error occurs when Transmitted data is != to Rx Data. Though all the other nodes have now gone to receiving mode, due to problems in the senders transceiver/noise effects, a bit error can occur. Every bit error possibility in the CAN Frame(upto EOM) will be checked by the sender

iBeacon / Bluetooth Low Energy (BLE devices) - maximum number of beacons

I would like to track a large number of beacons (~500) at once within a 50-100 m radius via an app on an iPhone (5s). I've had a look at the spec and online and I can't see if there is any limit on the number of beacons you can track at once using BLE. Does anyone know if there is limitation on the number of beacons you can track exists or if an iPhone 5s would be up to the task of tracking that many beacons?
You used the word track, but iOS has two different methods: monitoring and ranging.
You can set a maximum of 20 regions to monitor. (Found in documentation for the startMonitoringForRegion: method.) Region limits mostly come into play if your app is in the background. The OS will alert your app when you enter or leave a region that you're monitoring (give or take a few minutes). The OS will even launch your app just to let it know what happened (although only for a short time).
The other method is ranging, which is to find all the beacons within the Bluetooth range of the device (typically around 100 feet give or take). If your beacons are spread out over 100 miles, then you probably won't run into any practical limit here. I have not found any documentation for this, and I have only four beacons that I'm testing with, and four at a time works.
Here's one way to handle your situation. Make all your 500 beacons use the same UUID, and make a beacon region using initWithProximityUUID:identifier: method. (Identifier is just for you -- it doesn't affect anything). Starting monitoring for that beacon region. That way, your app will be notified whenever one of your 500 beacons are found (give or take a few minutes). Once notified, you can use startRangingBeaconsInRegion: to find all the beacons around that area, then use the major and minor values to figure out which beacons the user is near.
I'll add to Tim Tisdall's answer, which sets out the right framework. I can't speak to the specific capabilities of the iPhone 5s, or iOS in general, but I don't see any reason why it wouldn't return every ADV_IND packet (i.e. beacon transmission) that it receives.
The question is, will the 500 beacons be able to transmit their ADV_IND packets without collisions?
It takes about 0.128ms to transmit an ADV_IND packet. The time between advertising transmissions is configurable between 20ms and 10240ms (at intervals of 0.625ms), so the probability of collisions depends on the configuration of the beacons.
Based on the Poisson distribution, the probability of a collision for any given ADV_IND packet is 1-exp(-2*N*(0.128/AI)), where N is the number of beacons within range, AI is the time in milliseconds of the advertising interval (assuming all the beacons are configured the same), and the 0.128 is the time in milliseconds it takes to send the ADV_IND packet. (See http://www3.cs.stonybrook.edu/~jgao/CSE590-fall09/aloha-analysis.pdf if you want an explanation.)
For 500 beacons with the maximum advertising interval of about 10 seconds, there will be a collision about once every 81 packets (or about 6 out of 500). If you're willing to wait for a couple intervals (i.e. 30 seconds), there's a good chance you'll be able to receive all 500 ADV_IND packets.
On the other hand, if the advertising interval is smaller, say 500ms, you'll have a collision about 23% of the time (or 113 out of 500). You'd have to wait for several more intervals to improve the probability that you'd see the broadcasts from all the beacons.
The other way to look at it is that the more beacons you have, the longer you have to wait to make sure you receive all their packets. (The math to calculate the delay to receive the packets with a certain probability from the number of beacons and the advertising interval is too much for me today.)
One caveat: if you want to connect to these beacons, as opposed to just receiving the ADV_IND packet, that requires an exchange of two more packets on the advertising channels, and the probability of a collision in the advertising channels goes up a bit.
If I am reading your question right, you want to put all 500 iBeacons within 100 meters of each other, meaning their transmissions will overlap. You will probably run into radio congestion problems long before you run into any limitations of iOS7 or your phone.
I have successfully tested 20 iBeacons in close proximity without problems, but 500 iBeacons is an extreme density. this discussion on the hardware issue suggests you may run into trouble.
At a minimum, the collisions of the transmissions of 500 iBEacons will make it take longer for your iOS device to see each iBeacon. Normally, iOS7 provides a ranging update once per second for each iOS device, but you may find that you get updates much less often. It all depends on your application whether or not less frequent updates are acceptable.
Even if delays are acceptable, I would absolutely test this before counting on it working at all. Unfortunately, that means getting your hands on lots of iBeacons.
I don't agree. It is true that ble beacons only transmit advertising data, but the transmission of such data last about 3ms (considering three advertising channels).
Having 500 beacons, WITHOUT considering any collision, the scanner will takes 1.5s to see them all.
But, if all beacons are configured in same way (same advertising interval) it is inevitable to have collisions which lead to have undiscovered beacons. Even if the advertising interval is different between beacons collisions occur. To avoid collision probability one should use longer advertising interval, but this lead to longer discovery latency.
This reasoning is very raw, it doesn't take care of many effects, but is just an order of magnitude calculation.
By the way, the question is not easy, there are many parameters which play role, some are known some are unknown. But I'm working with ble since one year about and, to me, 500 is a huge number and there is the possibility that you don't see the majority of nodes because of collisions.
I was doing some research into iBeacon's because of this question (I had no idea what it was about).
It seems that on the "beacon" side of things all that happens is general advertising packets are sent out. It's similar to how a device advertises that you can connect to it. However, you don't actually connect to iBeacon's, it just reads those advertising packets. There's no built-in limitation on how many advertising packets a device can receive.
So, it wouldn't surprise me if 500 iBeacon's would run with no issues. The advertising packets are small and are spaced out (time wise, they are repeated every X ms). There's no communication going from the phone to the iBeacon, the phone is simply receiving the packets it hears. If there's interference on one packet it'll likely manage to get the next one.

Resources