I was reading the lifetimes chapter of the Rust book, and I came across this example for a named/explicit lifetime:
struct Foo<'a> {
x: &'a i32,
}
fn main() {
let x; // -+ x goes into scope
// |
{ // |
let y = &5; // ---+ y goes into scope
let f = Foo { x: y }; // ---+ f goes into scope
x = &f.x; // | | error here
} // ---+ f and y go out of scope
// |
println!("{}", x); // |
} // -+ x goes out of scope
It's quite clear to me that the error being prevented by the compiler is the use-after-free of the reference assigned to x: after the inner scope is done, f and therefore &f.x become invalid, and should not have been assigned to x.
My issue is that the problem could have easily been analyzed away without using the explicit 'a lifetime, for instance by inferring an illegal assignment of a reference to a wider scope (x = &f.x;).
In which cases are explicit lifetimes actually needed to prevent use-after-free (or some other class?) errors?
The other answers all have salient points (fjh's concrete example where an explicit lifetime is needed), but are missing one key thing: why are explicit lifetimes needed when the compiler will tell you you've got them wrong?
This is actually the same question as "why are explicit types needed when the compiler can infer them". A hypothetical example:
fn foo() -> _ {
""
}
Of course, the compiler can see that I'm returning a &'static str, so why does the programmer have to type it?
The main reason is that while the compiler can see what your code does, it doesn't know what your intent was.
Functions are a natural boundary to firewall the effects of changing code. If we were to allow lifetimes to be completely inspected from the code, then an innocent-looking change might affect the lifetimes, which could then cause errors in a function far away. This isn't a hypothetical example. As I understand it, Haskell has this problem when you rely on type inference for top-level functions. Rust nipped that particular problem in the bud.
There is also an efficiency benefit to the compiler — only function signatures need to be parsed in order to verify types and lifetimes. More importantly, it has an efficiency benefit for the programmer. If we didn't have explicit lifetimes, what does this function do:
fn foo(a: &u8, b: &u8) -> &u8
It's impossible to tell without inspecting the source, which would go against a huge number of coding best practices.
by inferring an illegal assignment of a reference to a wider scope
Scopes are lifetimes, essentially. A bit more clearly, a lifetime 'a is a generic lifetime parameter that can be specialized with a specific scope at compile time, based on the call site.
are explicit lifetimes actually needed to prevent [...] errors?
Not at all. Lifetimes are needed to prevent errors, but explicit lifetimes are needed to protect what little sanity programmers have.
Let's have a look at the following example.
fn foo<'a, 'b>(x: &'a u32, y: &'b u32) -> &'a u32 {
x
}
fn main() {
let x = 12;
let z: &u32 = {
let y = 42;
foo(&x, &y)
};
}
Here, the explicit lifetimes are important. This compiles because the result of foo has the same lifetime as its first argument ('a), so it may outlive its second argument. This is expressed by the lifetime names in the signature of foo. If you switched the arguments in the call to foo the compiler would complain that y does not live long enough:
error[E0597]: `y` does not live long enough
--> src/main.rs:10:5
|
9 | foo(&y, &x)
| - borrow occurs here
10 | };
| ^ `y` dropped here while still borrowed
11 | }
| - borrowed value needs to live until here
The lifetime annotation in the following structure:
struct Foo<'a> {
x: &'a i32,
}
specifies that a Foo instance shouldn't outlive the reference it contains (x field).
The example you came across in the Rust book doesn't illustrate this because f and y variables go out of scope at the same time.
A better example would be this:
fn main() {
let f : Foo;
{
let n = 5; // variable that is invalid outside this block
let y = &n;
f = Foo { x: y };
};
println!("{}", f.x);
}
Now, f really outlives the variable pointed to by f.x.
Note that there are no explicit lifetimes in that piece of code, except the structure definition. The compiler is perfectly able to infer lifetimes in main().
In type definitions, however, explicit lifetimes are unavoidable. For example, there is an ambiguity here:
struct RefPair(&u32, &u32);
Should these be different lifetimes or should they be the same? It does matter from the usage perspective, struct RefPair<'a, 'b>(&'a u32, &'b u32) is very different from struct RefPair<'a>(&'a u32, &'a u32).
Now, for simple cases, like the one you provided, the compiler could theoretically elide lifetimes like it does in other places, but such cases are very limited and do not worth extra complexity in the compiler, and this gain in clarity would be at the very least questionable.
If a function receives two references as arguments and returns a reference, then the implementation of the function might sometimes return the first reference and sometimes the second one. It is impossible to predict which reference will be returned for a given call. In this case, it is impossible to infer a lifetime for the returned reference, since each argument reference may refer to a different variable binding with a different lifetime. Explicit lifetimes help to avoid or clarify such a situation.
Likewise, if a structure holds two references (as two member fields) then a member function of the structure may sometimes return the first reference and sometimes the second one. Again explicit lifetimes prevent such ambiguities.
In a few simple situations, there is lifetime elision where the compiler can infer lifetimes.
I've found another great explanation here: http://doc.rust-lang.org/0.12.0/guide-lifetimes.html#returning-references.
In general, it is only possible to return references if they are
derived from a parameter to the procedure. In that case, the pointer
result will always have the same lifetime as one of the parameters;
named lifetimes indicate which parameter that is.
The case from the book is very simple by design. The topic of lifetimes is deemed complex.
The compiler cannot easily infer the lifetime in a function with multiple arguments.
Also, my own optional crate has an OptionBool type with an as_slice method whose signature actually is:
fn as_slice(&self) -> &'static [bool] { ... }
There is absolutely no way the compiler could have figured that one out.
As a newcomer to Rust, my understanding is that explicit lifetimes serve two purposes.
Putting an explicit lifetime annotation on a function restricts the type of code that may appear inside that function. Explicit lifetimes allow the compiler to ensure that your program is doing what you intended.
If you (the compiler) want(s) to check if a piece of code is valid, you (the compiler) will not have to iteratively look inside every function called. It suffices to have a look at the annotations of functions that are directly called by that piece of code. This makes your program much easier to reason about for you (the compiler), and makes compile times managable.
On point 1., Consider the following program written in Python:
import pandas as pd
import numpy as np
def second_row(ar):
return ar[0]
def work(second):
df = pd.DataFrame(data=second)
df.loc[0, 0] = 1
def main():
# .. load data ..
ar = np.array([[0, 0], [0, 0]])
# .. do some work on second row ..
second = second_row(ar)
work(second)
# .. much later ..
print(repr(ar))
if __name__=="__main__":
main()
which will print
array([[1, 0],
[0, 0]])
This type of behaviour always surprises me. What is happening is that df is sharing memory with ar, so when some of the content of df changes in work, that change infects ar as well. However, in some cases this may be exactly what you want, for memory efficiency reasons (no copy). The real problem in this code is that the function second_row is returning the first row instead of the second; good luck debugging that.
Consider instead a similar program written in Rust:
#[derive(Debug)]
struct Array<'a, 'b>(&'a mut [i32], &'b mut [i32]);
impl<'a, 'b> Array<'a, 'b> {
fn second_row(&mut self) -> &mut &'b mut [i32] {
&mut self.0
}
}
fn work(second: &mut [i32]) {
second[0] = 1;
}
fn main() {
// .. load data ..
let ar1 = &mut [0, 0][..];
let ar2 = &mut [0, 0][..];
let mut ar = Array(ar1, ar2);
// .. do some work on second row ..
{
let second = ar.second_row();
work(second);
}
// .. much later ..
println!("{:?}", ar);
}
Compiling this, you get
error[E0308]: mismatched types
--> src/main.rs:6:13
|
6 | &mut self.0
| ^^^^^^^^^^^ lifetime mismatch
|
= note: expected type `&mut &'b mut [i32]`
found type `&mut &'a mut [i32]`
note: the lifetime 'b as defined on the impl at 4:5...
--> src/main.rs:4:5
|
4 | impl<'a, 'b> Array<'a, 'b> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
note: ...does not necessarily outlive the lifetime 'a as defined on the impl at 4:5
--> src/main.rs:4:5
|
4 | impl<'a, 'b> Array<'a, 'b> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
In fact you get two errors, there is also one with the roles of 'a and 'b interchanged. Looking at the annotation of second_row, we find that the output should be &mut &'b mut [i32], i.e., the output is supposed to be a reference to a reference with lifetime 'b (the lifetime of the second row of Array). However, because we are returning the first row (which has lifetime 'a), the compiler complains about lifetime mismatch. At the right place. At the right time. Debugging is a breeze.
The reason why your example does not work is simply because Rust only has local lifetime and type inference. What you are suggesting demands global inference. Whenever you have a reference whose lifetime cannot be elided, it must be annotated.
I think of a lifetime annotation as a contract about a given ref been valid in the receiving scope only while it remains valid in the source scope. Declaring more references in the same lifetime kind of merges the scopes, meaning that all the source refs have to satisfy this contract.
Such annotation allow the compiler to check for the fulfillment of the contract.
Related
The following two rust functions are identical other than the fact that one returns an immutable reference and the other returns a mutable one. Since neither involves borrowing something multiple times, I don't see why the two sould work any differently. However, the one with the mutable reference results in a compile error, while the one with the immutable reference does not:
// This complies with no problems
fn foo<'a>() {
let _: &'a () = &();
}
// This does not compile (see error below)
fn foo_mut<'a>() {
let _: &'a mut () = &mut ();
}
error[E0716]: temporary value dropped while borrowed
--> src/main.rs:14:30
|
13 | fn foo_mut<'a>() {
| -- lifetime `'a` defined here
14 | let _: &'a mut () = &mut ();
| ---------- ^^ creates a temporary which is freed while still in use
| |
| type annotation requires that borrow lasts for `'a`
15 | }
| - temporary value is freed at the end of this statement
For more information about this error, try `rustc --explain E0716`.
error: could not compile `playground` due to previous error
It is also possibly relevant that when there are no explicit lifetimes, the code also has no problem compiling:
// This also compiles with no problem
fn foo_mut_without_lifetime() {
let _: &mut () = &mut ();
}
It seems the only thing that is causing a problem is trying to store a mutable reference with a lifetime, and that immutable references and references without explicit lifetimes have no issue. Why is this happening, and how can I get around it?
Note that there's nothing special about () or generic lifetimes here. This compiles fine:
fn allowed() -> &'static i32 {
let x = &3;
let y: &'static i32 = x;
y
}
And this does not:
fn not_allowed() -> &'static mut i32 {
let x = &mut 3;
let y: &'static mut i32 = x;
y
}
So why is the immutable reference allowed?
When you take a reference of a value, Rust infers the lifetime based on where the value's going to die. Here's an example:
let y;
{
let x = 3;
y = &x;
println!("{y}"); // works fine, `y` is still alive
} // `x` will get dropped at the end of this block
println!("{y}"); // fails to compile, the lifetime of `y` has expired (since `x` has died)
Since x dies at the end of the block, Rust knows that the lifetime of the y reference should only extend until the end of the block as well. Hence, it stops you from using it after x is dead.
This seems pretty obvious. But take a moment to think. In the following code:
let x;
{ // block A
x = &3;
}
What is the inferred lifetime of x? You may be tempted to say "the same as block A". But this would in fact be incorrect. Why? Because Rust is a bit smarter than that. It knows that 3 is a constant, and therefore Rust can fit 3 into the constant table of the final executable. And since the constant table will last as long as the lifetime of the final program, Rust can infer that the expression &3 has a 'static lifetime. Then everything works out fine, since &'static can be cast to any other lifetime as required!
Rust draws an explicit line between constants and temporaries, and one of the benefits of having a constant expression is that taking an immutable reference of any constant will always yield a 'static lifetime. This is not true of temporaries. The following code will not compile:
fn f() -> &'static String {
let x = &String::new();
let y: &'static String = x;
y
}
This is because for temporaries, Rust can't put them in the constant table of the executable, since they have to be computed on-demand, and therefore share the same lifetime as the scope they're in.
Okay, this is great, but why isn't the mutable reference of a constant allowed to be 'static?
There are two problems with allowing this:
On some architectures, constant tables can't be modified. This is true of WASM and some embedded architectures, as well as all Harvard-architecture machines. Providing a &mut reference would just be complete nonsense, since they're not mutable. And such fundamental borrow checker rules should really not differ between platforms.
A &'static mut reference is dangerous, since it is quite literally a global variable.
I have the following code:
struct Solver<'a> {
guesses: Vec<&'a str>,
}
impl<'a> Solver<'a> {
fn register_guess(&mut self, guess: &'a str) {
self.guesses.push(guess);
}
}
fn foo(mut solver: Solver, guess: &str) {
solver.register_guess(guess)
}
It doesn't compile:
|
11 | fn foo(mut solver: Solver, guess: &str) {
| ---------- - let's call the lifetime of this reference `'1`
| |
| has type `Solver<'2>`
12 | solver.register_guess(guess)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ argument requires that `'1` must outlive `'2`
The error message says that the argument guess must outlive solver. It's plainly obvious to me that that's true: the lifetime of solver ends at the end of the function, and the lifetime of guess doesn't. This seems like something the compiler should be able to infer, and compile without error.
Why isn't that the case? Does this code actually have some way for solver to outlive guess? Or is it just that the compiler doesn't try to do this kind of inference at all?
I know how to fix it --- change the function to fn foo<'a>(mut solver: Solver<'a>, guess: &'a str) --- but I'm asking why I should have to do that.
While solver itself can't outlive guess, the lifetime it refers to very well could. For example, imagine invoking foo() with a Solver<'static>. That kind of solver would expect guess to be &'static str and might store the data referred to by guess in a global variable. (Remember that the compiler doesn't consider what register_guess() does while borrow-checking foo(), it just considers its signature.)
More generally, Solver<'a> might contain references to 'a data that outlives solver itself. Nothing stops register_guess() from storing the contents of guess inside such references. If guess isn't guaranteed to live at least as long as 'a, then foo() is simply unsound. For example, take this alternative definition of Solver:
struct Solver<'a> {
guesses: &'a mut Vec<&'a str>,
}
With unchanged signature of register_guess(), foo() would allow unsound code like this:
fn main() {
let mut guesses = vec![];
let solver = Solver { guesses: &mut guesses };
{
let guess = "foo".to_string();
// stores temporary "foo" to guesses, which outlives it
foo(solver, guess.as_str());
}
println!("{}", guesses[0]); // UB: use after free
}
This error comes from rust's rules of lifetime elision. One of this rules states that:
Each elided lifetime in the parameters becomes a distinct lifetime parameter
Rust conservatively assumes that each not specified lifetime is different. If you want some lifetimes to be equal you must specify it explicitly. Your problem is equivalent to simple function that takes two string slices and returns the longer one. You must write the signature of such function as fn longer<'a>(&'a str, &'a str) -> &'a str, or the compiler will give you the same error.
I'm trying to have a MyType that supports a From<&[u8]> trait, but I'm running into "lifetime problems":
Here's a minimally viable example:
struct MyType {
i: i32
}
impl MyType {
fn from_bytes(_buf: &[u8]) -> MyType {
// for example...
MyType { i: 3 }
}
}
impl From<&[u8]> for MyType {
fn from(bytes: &[u8]) -> Self {
MyType::from_bytes(bytes)
}
}
fn do_smth<T>() -> T where T: From<&[u8]>
{
// for example...
let buf : Vec<u8> = vec![1u8, 2u8];
T::from(buf.as_slice())
}
(...and here's a Rust playground link)
For reasons I cannot understand, the Rust compiler is telling me:
error[E0637]: `&` without an explicit lifetime name cannot be used here
--> src/lib.rs:17:36
|
17 | fn do_smth<T>() -> T where T: From<&[u8]>
| ^ explicit lifetime name needed here
I'm not an expert on lifetimes and I don't understand why this piece of code needs one. What would be the best way to fix this?
Might Rust be thinking that the type T could be a &[u8] itself? But, in that case, the lifetime should be inferred to be the same as the input to From::<&[u8]>::from(), no?
One fix I was given was to do:
fn do_smth<T>() -> T where for<'a> T: From<&'a [u8]>
{
// for example...
let buf : Vec<u8> = vec![1u8, 2u8];
T::from(buf.as_slice())
}
...but I do not understand this fix, nor do I understand why lifetimes are needed in the first place.
Rust first wants you to write:
fn do_smth<'a, T>() -> T
where
T: From<&'a [u8]>,
{
// for example...
let buf: Vec<u8> = vec![1u8, 2u8];
T::from(&buf)
}
where you make explicit that this function can be called for any lifetime 'a and any type T such that T implements From<&'a [u8]>.
But Rust then complains:
error[E0597]: `buf` does not live long enough
--> src/lib.rs:24:13
|
18 | fn do_smth<'a, T>() -> T
| -- lifetime `'a` defined here
...
24 | T::from(&buf)
| --------^^^^-
| | |
| | borrowed value does not live long enough
| argument requires that `buf` is borrowed for `'a`
25 | }
| - `buf` dropped here while still borrowed
You promised that this function could work with any lifetime, but this turns out to not be true, because in the body of the function you create a fresh reference to the local Vec which has a different lifetime, say 'local. Your function only works when 'a equals 'local, but you promise that it also works for all other lifetimes. What you need is a way to express that these lifetimes are the same, and the only way I think that is possible is by changing the local reference to an argument:
fn do_smth<'a, T>(buf: &'a [u8]) -> T
where
T: From<&'a [u8]>,
{
T::from(buf)
}
And then it compiles.
If instead of the function promising it can work with any lifetime, you want to make the caller promise it can work with any lifetime, you can instead use HRTBs to make the caller promise it.
fn do_smth<T>() -> T
where
for<'a> T: From<&'a [u8]>,
{
// for example...
let buf: Vec<u8> = vec![1u8, 2u8];
T::from(&buf)
}
Now, since you can use any lifetime, a local one also works and the code compiles.
Lifetimes represent a "duration" (metaphorically), or, more pragmatically, a scope, in which a variable is valid. Outside of one's lifetime, the variable should be considered as having been freed from memory, even though you haven't done that explicitly, because that's how Rust manages memory.
It becomes a bit more complex when Rust tries to ensure that, once a variable is done for, no other parts of the code that could have had access to that variable still have access. These shared accesses are called borrows, and that's why borrows have lifetimes too. The main condition Rust enforces on them is that a borrow's lifetime is always shorter (or within, depending on how you see it) than its original variable, ie. you can't share something for more time than you actually own it.
Rust therefore enforces all borrows (as well as all variables, really) to have an established lifetime at compile-time. To lighten things, Rust has default rules about what a lifetime should be if it was not explicitly defined by the user, that is, when you talk about a type that involves a lifetime, Rust let's you not write that lifetime explicitly under certain conditions. However, this is not a "lifetime inference", in the sense of inferring types: Rust will not try to make sense out of explicit lifetimes, it's a lot less smart about it. In particular, this lifetime explicitation can fail, in the sense that Rust will not be able to figure out the right lifetime it has to assign even though it was possible to find out that worked.
Back to business: your first error simply stems from the fact that Rust has no rule to make a lifetime if it wasn't provided in the position pointed out by the error. As I said, Rust won't try to infer what the right lifetime would be, it simply checks whether not explicitly putting a lifetime there implicitly means something or not. So, you simply need to put one.
Your first reflex might be to make your function generic over the missing lifetime, which is often the right thing to do (and even the only possible action), that is, do something like that:
fn do_smth<'a, T>() -> T
where
T: From<&'a [u8]>
{
// for example...
let buf : Vec<u8> = vec![1, 2];
T::from(buf.as_slice())
}
What this means is that do_smth is generic over the lifetime 'a, just like it is generic over the type T. This has two consequences:
Rust will proceed to a monomorphisation of your function for each call, meaning it will actually provide a concrete implementation of your function for each type T and each lifetime 'a that is required. In particular, it will automatically find out what is the right lifetime. This might seem contradictory with what I said earlier, about Rust not inferring lifetimes. The difference is that type inference and monomorphisation, although similar, are not the same step, and so the compiler does not work lifetimes in the same way. Don't worry about this until you have understood the rest.
The second consequence, which is a bit disastrous, is that your function exposes the following contract: for any type T, and any lifetime 'a, such that T: From<&'a [u8]>, do_smth can produce a type T. If you think about it, it means that even if T only implements From<&'a [u8]> for a lifetime 'a that is already finished (or, if you see lifetimes as scopes, for a lifetime 'a that is disjoint from do_smth's scope), you can produce an element of type T. This is not what you actually meant: you don't want the caller to give you an arbitrary lifetime. Instead, you know that the lifetime of the borrow of the slice is the one you chose it to be, within your function (because you own the underlying vector), and you want that the type T to be buildable from that slice. That is, you want T: From<&'a [u8]> for a 'a that you have chosen, not one provided by the caller.
This last point should make you understand why the previous snippet of code is unsound, and won't compile. Your function should not take a lifetime as argument, just a type T with certain constraints. But then, how do you encode the said conditions? That's where for<'a> comes into play. If you have a type T such that T: for<'a> From<&'a [u8]>, it means that for all 'a, T: From<&'a [u8]>. In particular, it is true for the lifetime of your slice. This is why the following works
fn do_smth<T>() -> T
where
T: for<'a> From<&'a [u8]>
{
// for example...
let buf: Vec<u8> = vec![1, 2];
T::from(buf.as_slice())
}
Note that, as planned, this version of do_smth is not generic over a lifetime, that is, the caller does not provide a lifetime to the function.
Consider the following:
use std::collections::HashMap;
use std::vec::Vec;
use crate::core::process_call_backs::SimpleCallback;
pub fn make_adventure_list(adventure_list: Vec<SimpleCallback>) -> HashMap<&i32, SimpleCallback> {
let mut adventures = HashMap::new();
let mut count = 1;
for adventure in adventure_list {
adventures.insert(count, adventure);
count = count + 1;
}
adventures;
}
I get the error:
error[E0106]: missing lifetime specifier
--> core/src/core/create_adventures.rs:5:76
|
5 | pub fn make_adventure_list(adventure_list: Vec<SimpleCallback>) -> HashMap<&i32, SimpleCallback> {
| ^ help: consider giving it an explicit bounded or 'static lifetime: `&'static`
|
= help: this function's return type contains a borrowed value with an elided lifetime, but the lifetime cannot be derived from the arguments
I understand the meaning of this error, but not I'm sure how to implement the fix. Do I need to make adventure_list mutable?
I guess you want to map numbers to callbacks. But what you wrote is mapping references to numbers to callbacks.
Now, references have a lifetime. In your case, you start out with count - which lives only inside your function. Thus, even if you wanted to refer (i.e. have a reference) to it in your result, this would go wrong, as count goes out of scope at the end of the function.
What you almost certainly want, is your result type to be HashMap<i32, SimpleCallback>.
Remark: Since references have lifetimes, Rust suggests to add a static lifetime, meaning that you have references to numbers that are available for the whole run of the program (as opposed to only within your function). But, as said, you almost certainly do not want references to numbers, but simply numbers.
I started learning Rust a few days back.
This is an extract from the famous book Programming Rust by Jim Blandy.
For the code
fn g<'a>(p: &'a i32) { ... }
let x = 10;
g(&x);
The book says
Rust Choose the smallest possible lifetime for &x, that of the call to g. This meets all constraints: it doesn't outlive x, and encloses the entire call to g. So code must muster.
Q1. What is meant by the smallest possible lifetime for &x?
For the code
fn f(p: &'static i32) { ... }
let x = 10;
f(&x);
Q2. Why does this code fail? According to my understanding, &'static is used for static global variables which live for the full program. link
A 'static lifetime is a special concept. It specifies that the variable referenced by this needs to exist for the entire lifetime of the program. Using this is a rare case, and requires even rarer precautions to fulfill.
In practice, a &'static reference may only happen in two cases:
A const declaration
A static declaration
Both effectively accomplish the same thing, in different ways; the differences aren't important to this question, however. In both cases, the outcome is a variable that is available for the entire lifetime of the program and will not be relocated, thus guaranteeing &'static if borrowed.
Now that we've covered this, let's cover both of your questions.
Q1. What is meant by the smallest possible lifetime for &x?
When you define a function as fn g<'a>(p: &'a i32) { ... }, you are requiring p to be valid for a lifetime 'a; this lifetime is determined by the compiler so that 'a is the smallest possible. If the reference is never used outside of the function scope, 'a will be the lifetime of execution of that function, for example. If you use or reference this borrow outside of the function, the lifetime will (evidently) be larger.
The definition of "smallest possible" is simple: the compiler will infer the lifetime based from the time you start that reference, to the last time you use that reference. Dependent borrows also count, and this typically comes back to bite people when dealing with collections.
The reason it is the smallest possible is so that you don't run into crazy situations where you don't have a borrow but it is borrowed anyway; this typically happens when you try to provide your own, incorrect, lifetime hints. There are plenty of cases where it is usually best to let the compiler decide; the other case is struct implementations such as the following:
struct Foo<'a> {
item: &'a u32
}
impl<'a> Foo<'a> {
pub fn compare<'b>(&self, other: &'b u32) {
...
}
}
A common fault in situations like this is to describe other to the compiler as 'a, not defining the second 'b lifetime, and thus (accidentally) requiring other to be borrowed for the lifetime of the struct itself.
Q2. Why does this code fail? According to my understanding, &'static is used for static global variables which live for the full program.
let x = 10;
This assignment does not have a 'static lifetime. It has an anonymous lifetime defined as less than 'static, because it is not strictly defined as global. The only way to get a 'static borrow on anything is if that source element is defined as const or static.
You can convince yourself of this with this snippet (playground):
fn f(p: &'static i32) {
println!("{}", p)
}
const FOO:i32 = 3;
static BAR:i32 = 4;
fn main() {
f(&FOO); // Works
f(&BAR); // Also works
}
f(&x);
A 'static lifetime requirement on a reference requires this argument to be declared for the global lifetime of the program, but x cannot fulfill this condition as it is declared midway through execution.
To be able to use this, declare x as const or static so its lifetime will be 'static and the code will work fine.