Nested if in Gnu Mathprog for an energy model - gnu

I have a code in Gnu Mathprog for an energy model:
s.t.EBa1_RateOfFuelProduction1{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: OutputActivityRatio[r,t,f,m,y] <> 0}:
RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] = RateOfProductionByTechnologyByMode[r,l,t,m,f,y];
s.t.EBa4_RateOfFuelUse1{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: InputActivityRatio[r,t,f,m,y]<>0}:
RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] = RateOfUseByTechnologyByMode[r,l,t,m,f,y];
I want to put these two constraints in one, and i am thinking to insert two conditional expressions(if).The first if, will be referred to technology(t) and fuel(f)where the OutputActivityRatio<>0 and the second one for the same technology(t) it will start checking again the f(fuels) to see if the InputActivityRatio<>0.
Like that:
s.t.RateOfProduction{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: OutputActivityRatio[r,t,f,m,y] <>0}:
RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] = RateOfProductionByTechnologyByMode[r,l,t,m,f,y]
If InputActivityRatio[r,t,ff,m,y]<>0 then
RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] = RateOfUseByTechnologyByMode[r,l,t,m,f,y]
else 0
else 0 ;
My question is: is it possible to have two if in series (nested if) and between them to have an equation as well?How can I write something like that?
Thank you very much!

As described in your other Question (regarding nested if-then-else in mathprog) there are no If-Then-Else statements in mathprog. The workaround with conditional for-loops is also no solution for your problem, since you can only use them in pre- or post processing of your data (you can't use this in your constraints!).
But there are still possibilities to merge your constraints. I think something like the following would work, if your condition is that either Input or Output is 0.
s.t.RateOfProduction{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR}:
(RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y])
+ (RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y])
= RateOfProductionByTechnologyByMode[r,l,t,m,f,y];
Here in the lefthandside summation one multiplication would turn zero.
Since I don't know which parts are variables and which a parameters, this solution could also fail (for example it could be problematic if there is input and output at the same time and the rest of the model doesn't contain the right bounds for that)

Related

Simultaneous Subset sums

I am dealing with a problem which is a variant of a subset-sum problem, and I am hoping that the additional constraint could make it easier to solve than the classical subset-sum problem. I have searched for a problem with this constraint but I have been unable to find a good example with an appropriate algorithm either on StackOverflow or through googling elsewhere.
The problem:
Assume you have two lists of positive numbers A1,A2,A3... and B1,B2,B3... with the same number of elements N. There are two sums Sa and Sb. The problem is to find the simultaneous set Q where |sum (A{Q}) - Sa| <= epsilon and |sum (B{Q}) - Sb| <= epsilon. So, if Q is {1, 5, 7} then A1 + A5 + A7 - Sa <= epsilon and B1 + B5 + B7 - Sb <= epsilon. Epsilon is an arbitrarily small positive constant.
Now, I could solve this as two completely separate subset sum problems, but removing the simultaneity constraint results in the possibility of erroneous solutions (where Qa != Qb). I also suspect that the additional constraint should make this problem easier than the two NP complete problems. I would like to solve an instance with 18+ elements in both lists of numbers, and most subset-sum algorithms have a long run time with this number of elements. I have investigated the pseudo-polynomial run time dynamic programming algorithm, but this has the problems that a) the speed relies on a short bit-depth of the list of numbers (which does not necessarily apply to my instance) and b) it does not take into account the simultaneity constraint.
Any advice on how to use the simultaneity constraint to reduce the run time? Is there a dynamic programming approach I could use to take into account this constraint?
If I understand your description of the problem correctly (I'm confused about why you have the distance symbols around "sum (A{Q}) - Sa" and "sum (B{Q}) - Sb", it doesn't seem to fit the rest of the explanation), then it is in NP.
You can see this by making a reduction from Subset sum (SUB) to Simultaneous subset sum (SIMSUB).
If you have a SUB problem consisting of a set X = {x1,x2,...,xn} and a target called t and you have an algorithm that solves SIMSUB when given two sets A = {a1,a2,...,an} and B = {b1,b2,...,bn}, two intergers Sa and Sb and a value for epsilon then we can solve SUB like this:
Let A = X and let B be a set of length n consisting of only 0's. Set Sa = t, Sb = 0 and epsilon = 0. You can now run the SIMSUB algorithm on this problem and get the solution to your SUB problem.
This shows that SUBSIM is as least as hard as SUB and therefore in NP.

Coefficient of Variations?

I have a list of values incrementing exponentially. I was asked to have multiple Coefficent of variations from them. You might agree with me that CV is only for the whole set of numbers and dividing the set of numbers into subgroups and calculating a CV for each subgroup seems unreasonable. Would there be any statistical idea behind multiple CVs and if there is, how histogram can be made by the CVs, I mean what would the bins of the historgram. I appreciate the answers in advance
I agree with you - it does not make sense to me to calculate multiple CVs for one dataset unless there's some inferential reason for doing so.
That being said, there might actually be a reason for considering sub-groups of a dataset. In the field of Statistics, context is everything. My first thought is to ask your colleague why they want you do proceed that way. Maybe there's a good reason, maybe they don't have as full a grasp of stats as you do, regardless, it should be an enlightening conversation to have.
If you do decide to go this route, here's some R code that might help (R is great - flexible, powerful, and free)
# first, simulating some fake data (100 values of measurement & group for 10 groups)
x <- rnorm(100, mean=10, sd=1)
group <- sample(LETTERS[1:10], 100, replace=T)
# first few values of each
head(data.frame(x, group))
x group
1 10.778480 F
2 9.274193 B
3 9.639143 G
4 9.080369 I
5 10.727895 D
6 10.850306 G
# this is the part you'd actually need...
# calculating the sd & avgs for each group
sds <- tapply(x, group, sd)
avgs <- tapply(x, group, mean)
# then the cv
cvs <- sds/avgs
cvs
A B C D E F G H I J
0.07859528 0.07570556 0.09370247 0.12552468 0.08897856 0.11044543 0.10947615 0.10323379 0.08908262 0.09729945
# and if you want a histogram, R makes it pretty easy
hist(cvs)

Reverse Interpolation

I have a class implementing an audio stream that can be read at varying speed (including reverse and fast varying / "scratching")... I use linear interpolation for the read part and everything works quite decently..
But now I want to implement writing to the stream at varying speed as well and that requires me to implement a kind of "reverse interpolation" i.e. Deduce the input sample vector Z that, interpolated with vector Y will produce the output X (which I'm trying to write)..
I've managed to do it for constant speeds, but generalising for varying speeds (e.g accelerating or decelerating) is proving more complicated..
I imagine this problem has been solved repeatedly, but I can't seem to find many clues online, so my specific question is if anyone has heard of this problem and can point me in the right direction (or, even better, show me a solution :)
Thanks!
I would not call it "reverse interpolation" as that does not exists (my first thought was you were talking about extrapolation!). What you are doing is still simply interpolation, just at an uneven rate.
Interpolation: finding a value between known values
Extrapolation: finding a value beyond known values
Interpolating to/from constant rates is indeed much much simpler than the generic quest of "finding a value between known values". I propose 2 solutions.
1) Interpolate to a significantly higher rate, and then just sub-sample to the nearest one (try adding dithering)
2) Solve the generic problem: for each point you need to use the neighboring N points and fit a order N-1 polynomial to them.
N=2 would be linear and would add overtones (C0 continuity)
N=3 could leave you with step changes at the halfway point between your source samples (perhaps worse overtones than N=2!)
N=4 will get you C1 continuity (slope will match as you change to the next sample), surely enough for your application.
Let me explain that last one.
For each output sample use the 2 previous and 2 following input samples. Call them S0 to S3 on a unit time scale (multiply by your sample period later), and you are interpolating from time 0 to 1. Y is your output and Y' is the slope.
Y will be calculated from this polynomial and its differential (slope)
Y(t) = At^3 + Bt^2 + Ct + D
Y'(t) = 3At^2 + 2Bt + C
The constraints (the values and slope at the endpoints on either side)
Y(0) = S1
Y'(0) = (S2-S0)/2
Y(1) = S2
Y'(1) = (S3-S1)/2
Expanding the polynomial
Y(0) = D
Y'(0) = C
Y(1) = A+B+C+D
Y'(1) = 3A+2B+C
Plugging in the Samples
D = S1
C = (S2-S0)/2
A + B = S2 - C - D
3A+2B = (S3-S1)/2 - C
The last 2 are a system of equations that are easily solvable. Subtract 2x the first from the second.
3A+2B - 2(A+B)= (S3-S1)/2 - C - 2(S2 - C - D)
A = (S3-S1)/2 + C - 2(S2 - D)
Then B is
B = S2 - A - C - D
Once you have A, B, C and D you can put in an time 't' in the polynomial to find a sample value between your known samples.
Repeat for every output sample, reuse A,B,C&D if the next output sample is still between the same 2 input samples. Calculating t each time is similar to Bresenham's line algorithm, you're just advancing by a different amount each time.

Explain this DSP notation

I'm trying to implement this extenstion of the Karplus-Strong plucked string algorithm, but I don't understand the notation there used. Maybe it will take years of study, but maybe it won't - maybe you can tell me.
I think the equations below are in the frequency domain or something. Just starting with the first equation, Hp(z), the pick direction lowpass filter. For one direction you use p = 0, for the other, perhaps 0.9. This boils down to to 1 in the first case, or 0.1 / (1 - 0.9 z-1) in the second.
alt text http://www.dsprelated.com/josimages/pasp/img902.png
Now, I feel like this might mean, in coding terms, something towards:
H_p(float* input, int time) {
if (downpick) {
return input[time];
} else {
return some_function_of(input[t], input[t-1]);
}
}
Can someone give me a hint? Or is this futile and I really need all the DSP background to implement this? I was a mathematician once...but this ain't my domain.
So the z-1 just means a one-unit delay.
Let's take Hp = (1-p)/(1-pz-1).
If we follow the convention of "x" for input and "y" for output, the transfer function H = y/x (=output/input)
so we get y/x = (1-p)/(1-pz-1)
or (1-p)x = (1-pz-1)y
(1-p)x[n] = y[n] - py[n-1]
or: y[n] = py[n-1] + (1-p)x[n]
In C code this can be implemented
y += (1-p)*(x-y);
without any additional state beyond using the output "y" as a state variable itself. Or you can go for the more literal approach:
y_delayed_1 = y;
y = p*y_delayed_1 + (1-p)*x;
As far as the other equations go, they're all typical equations except for that second equation which looks like maybe it's a way of selecting either HΒ = 1-z-1 OR 1-z-2. (what's N?)
The filters are kind of vague and they'll be tougher for you to deal with unless you can find some prepackaged filters. In general they're of the form
H = H0*(1+az-1+bz-2+cz-3...)/(1+rz-1+sz-2+tz-3...)
and all you do is write down H = y/x, cross multiply to get
H0 * (1+az-1+bz-2+cz-3...) * x = (1+rz-1+sz-2+tz-3...) * y
and then isolate "y" by itself, making the output "y" a linear function of various delays of itself and of the input.
But designing filters (picking the a,b,c,etc.) is tougher than implementing them, for the most part.

Do you find you still need variables you can change, and if so why?

One of the arguments I've heard against functional languages is that single assignment coding is too hard, or at least significantly harder than "normal" programming.
But looking through my code, I realized that I really don't have many (any?) use patterns that can't be written just as well using single assignment form if you're writing in a reasonably modern language.
So what are the use cases for variables that vary within a single invocation of their scope? Bearing in mind that loop indexes, parameters, and other scope bound values that vary between invocations aren't multiple assignments in this case (unless you have to change them in the body for some reason), and assuming that you are writing in something a far enough above the assembly language level, where you can write things like
values.sum
or (in case sum isn't provided)
function collection.sum --> inject(zero, function (v,t) --> t+v )
and
x = if a > b then a else b
or
n = case s
/^\d*$/ : s.to_int
'' : 0
'*' : a.length
'?' : a.length.random
else fail "I don't know how many you want"
when you need to, and have list comprehensions, map/collect, and so forth available.
Do you find that you still want/need mutable variables in such an environment, and if so, what for?
To clarify, I'm not asking for a recitation of the objections to SSA form, but rather concrete examples where those objections would apply. I'm looking for bits of code that are clear and concise with mutable variables and couldn't be written so without them.
My favorite examples so far (and the best objection I expect to them):
Paul Johnson's Fisher-Yates algorithm answer, which is pretty strong when you include the big-O constraints. But then, as catulahoops points out, the big-O issue isn't tied to the SSA question, but rather to having mutable data types, and with that set aside the algorithm can be written rather clearly in SSA:
shuffle(Lst) ->
array:to_list(shuffle(array:from_list(Lst), erlang:length(Lst) - 1)).
shuffle(Array, 0) -> Array;
shuffle(Array, N) ->
K = random:uniform(N) - 1,
Ek = array:get(K, Array),
En = array:get(N, Array),
shuffle(array:set(K, En, array:set(N, Ek, Array)), N-1).
jpalecek's area of a polygon example:
def area(figure : List[Point]) : Float = {
if(figure.empty) return 0
val last = figure(0)
var first= figure(0)
val ret = 0
for (pt <- figure) {
ret+=crossprod(last - first, pt - first)
last = pt
}
ret
}
which might still be written something like:
def area(figure : List[Point]) : Float = {
if figure.length < 3
0
else
var a = figure(0)
var b = figure(1)
var c = figure(2)
if figure.length == 3
magnitude(crossproduct(b-a,c-a))
else
foldLeft((0,a,b))(figure.rest)) {
((t,a,b),c) => (t+area([a,b,c]),a,c)
}
Or, since some people object to the density of this formulation, it could be recast:
def area([]) = 0.0 # An empty figure has no area
def area([_]) = 0.0 # ...nor does a point
def area([_,_]) = 0.0 # ...or a line segment
def area([a,b,c]) = # The area of a triangle can be found directly
magnitude(crossproduct(b-a,c-a))
def area(figure) = # For larger figures, reduce to triangles and sum
as_triangles(figure).collect(area).sum
def as_triangles([]) = [] # No triangles without at least three points
def as_triangles([_]) = []
def as_triangles([_,_]) = []
def as_triangles([a,b,c | rest) = [[a,b,c] | as_triangles([a,c | rest])]
Princess's point about the difficulty of implementing O(1) queues with immutable structures is interesting (and may well provide the basis for a compelling example) but as stated it's fundamentally about the mutability of the data structure, and not directly about the multiple assignment issue.
I'm intrigued by the Sieve of Eratosthenes answer, but unconvinced. The proper big-O, pull as many primes as you'd like generator given in the paper he cited does not look easy to implement correctly with or without SSA.
Well, thanks everyone for trying. As most of the answers turned out to be either 1) based on mutable data structures, not on single-assignment, and 2) to the extent they were about single assignment form easily countered by practitioners skilled in the art, I'm going to strike the line from my talk and / or restructure (maybe have it in backup as a discussion topic in the unlikely event I run out of words before I run out of time).
Thanks again.
The hardest problem I've come across is shuffling a list. The Fisher-Yates algorithm (also sometimes known as the Knuth algorithm) involves iterating through the list swapping each item with a random other item. The algorithm is O(n), well known and long-since proven correct (an important property in some applications). But it requires mutable arrays.
That isn't to say you can't do shuffling in a functional program. Oleg Kiselyov has written about this. But if I understand him correctly, functional shuffling is O(n . log n) because it works by building a binary tree.
Of course, if I needed to write the Fisher-Yates algorithm in Haskell I'd just put it in the ST monad, which lets you wrap up an algorithm involving mutable arrays inside a nice pure function, like this:
-- | Implementation of the random swap algorithm for shuffling. Reads a list
-- into a mutable ST array, shuffles it in place, and reads out the result
-- as a list.
module Data.Shuffle (shuffle) where
import Control.Monad
import Control.Monad.ST
import Data.Array.ST
import Data.STRef
import System.Random
-- | Shuffle a value based on a random seed.
shuffle :: (RandomGen g) => g -> [a] -> [a]
shuffle _ [] = []
shuffle g xs =
runST $ do
sg <- newSTRef g
let n = length xs
v <- newListArray (1, n) xs
mapM_ (shuffle1 sg v) [1..n]
getElems v
-- Internal function to swap element i with a random element at or above it.
shuffle1 :: (RandomGen g) => STRef s g -> STArray s Int a -> Int -> ST s ()
shuffle1 sg v i = do
(_, n) <- getBounds v
r <- getRnd sg $ randomR (i, n)
when (r /= i) $ do
vi <- readArray v i
vr <- readArray v r
writeArray v i vr
writeArray v r vi
-- Internal function for using random numbers
getRnd :: (RandomGen g) => STRef s g -> (g -> (a, g)) -> ST s a
getRnd sg f = do
g1 <- readSTRef sg
let (v, g2) = f g1
writeSTRef sg g2
return v
If you want to make the academic argument, then of course it's not technically necessary to assign a variable more than once. The proof is that all code can be represented in SSA (Single Static Assignment) form. Indeed, that's the most useful form for many kinds of static and dynamic analysis.
At the same time, there are reasons we don't all write code in SSA form to begin with:
It usually takes more statements (or more lines of code) to write code this way. Brevity has value.
It's almost always less efficient. Yes I know you're talking about higher languages -- a fair scoping -- but even in the world of Java and C#, far away from assembly, speed matters. There are few applications where speed is irrelevant.
It's not as easy to understand. Although SSA is "simpler" in a mathematical sense, it's more abstract from common sense, which is what matters in real-world programming. If you have to be really smart to grok it, then it has no place in programming at large.
Even in your examples above, it's easy to poke holes. Take your case statement. What if there's an administrative option that determines whether '*' is allowed, and a separate one for whether '?' is allowed? Also, zero is not allowed for the integer case, unless the user has a system permission that allows it.
This is a more real-world example with branches and conditions. Could you write this as a single "statement?" If so, is your "statement" really different from many separate statements? If not, how many temporary write-only variables do you need? And is that situation significantly better than just having a single variable?
I've never identified such a case. And while you can always just invent new names, as in conversion to SSA form, I actually find it's easy and natural for each value to have its own name. A language like Haskell gives me a lot of choices about which values to name, and two different places to put name bindings (let and where). I find the single-assignment form quite natural and not at all difficult.
I do occasionally miss being able to have pointers to mutable objects on the heap. But these things have no names, so it's not the same objection. (And I also find that when I use mutable objects on the heap, I tend to write more bugs!)
I think you'll find the most productive languages allow you to mix functional and imperative styles, such as OCaml and F#.
In most cases, I can write code which is simply a long line of "map x to y, reduce y to z". In 95% of cases, functional programming simplifies my code, but there is one area where immutability shows its teeth:
The wide disparity between the ease of implementing and immutable stack and an immutable queue.
Stacks are easy and mesh well with persistence, queues are ridiculous.
The most common implementations of immutable queues use one or more internal stacks and stack rotations. The upside is that these queues run in O(1) most of the time, but some operations will run in O(n). If you're relying on persistence in your application, then its possible in principle that every operation runs in O(n). These queues are no good when you need realtime (or at least consistent) performance.
Chris Okasaki's provides an implementation of immutable queues in his book, they use laziness to achieve O(1) for all operations. Its a very clever, reasonably concise implementation of a realtime queue -- but it requires deep understanding of its underlying implementation details, and its still an order of magnitude more complex than an immutable stack.
In constrast, I can write a stack and queue using mutable linked lists which run in constant time for all operations, and the resulting code would be very straightforward.
Regarding the area of a polygon, its easy to convert it to functional form. Let's assume we have a Vector module like this:
module Vector =
type point =
{ x : float; y : float}
with
static member ( + ) ((p1 : point), (p2 : point)) =
{ x = p1.x + p2.x;
y = p1.y + p2.y;}
static member ( * ) ((p : point), (scalar : float)) =
{ x = p.x * scalar;
y = p.y * scalar;}
static member ( - ) ((p1 : point), (p2 : point)) =
{ x = p1.x - p2.x;
y = p1.y - p2.y;}
let empty = { x = 0.; y = 0.;}
let to_tuple2 (p : point) = (p.x, p.y)
let from_tuple2 (x, y) = { x = x; y = y;}
let crossproduct (p1 : point) (p2 : point) =
{ x = p1.x * p2.y; y = -p1.y * p2.x }
We can define our area function using a little bit of tuple magic:
let area (figure : point list) =
figure
|> Seq.map to_tuple2
|> Seq.fold
(fun (sum, (a, b)) (c, d) -> (sum + a*d - b*c, (c, d) ) )
(0., to_tuple2 (List.hd figure))
|> fun (sum, _) -> abs(sum) / 2.0
Or we can use the cross product instead
let area2 (figure : point list) =
figure
|> Seq.fold
(fun (acc, prev) cur -> (acc + (crossproduct prev cur), cur))
(empty, List.hd figure)
|> fun (acc, _) -> abs(acc.x + acc.y) / 2.0
I don't find either function unreadable.
That shuffle algorithm is trivial to implement using single assignment, in fact it's exactly the same as the imperative solution with the iteration rewritten to tail recursion. (Erlang because I can write it more quickly than Haskell.)
shuffle(Lst) ->
array:to_list(shuffle(array:from_list(Lst), erlang:length(Lst) - 1)).
shuffle(Array, 0) -> Array;
shuffle(Array, N) ->
K = random:uniform(N) - 1,
Ek = array:get(K, Array),
En = array:get(N, Array),
shuffle(array:set(K, En, array:set(N, Ek, Array)), N-1).
If the efficiency of those array operations is a concern, then that's a question about mutable data structures and has nothing to do with single assignment.
You won't get an answer to this question because no examples exist. It is only a question of familiarity with this style.
In response to Jason --
function forbidden_input?(s)
(s = '?' and not administration.qmark_ok) ||
(s = '*' and not administration.stat_ok) ||
(s = '0' and not 'root node visible' in system.permissions_for(current_user))
n = if forbidden_input?(s)
fail "'" + s + "' is not allowed."
else
case s
/^\d*$/ : s.to_int
'' : 0
'*' : a.length
'?' : a.length.random
else fail "I don't know how many you want"
I would miss assignments in a non-purely functional language. Mostly because they hinder the usefulness of loops. Examples (Scala):
def quant[A](x : List[A], q : A) = {
var tmp : A=0
for (el <- x) { tmp+= el; if(tmp > q) return el; }
// throw exception here, there is no prefix of the list with sum > q
}
This should compute the quantile of a list, note the accumulator tmp which is assigned to multiple times.
A similar example would be:
def area(figure : List[Point]) : Float = {
if(figure.empty) return 0
val last = figure(0)
var first= figure(0)
val ret = 0
for (pt <- figure) {
ret+=crossprod(last - first, pt - first)
last = pt
}
ret
}
Note mostly the last variable.
These examples could be rewritten using fold on a tuple to avoid multiple assignments, but that would really not help the readability.
Local (method) variables certainly never have to be assigned to twice. But even in functional programming re-assigning a variable is allowed. It's changing (part of) the value that's not allowed. And as dsimcha already answered, for very large structures (perhaps at the root of an application) it doesn't seem feasible to me to replace the entire structure. Think about it. The state of an application is all contained ultimately by the entrypoint method of your application. If absolutely no state can change without being replaced, you would have to restart your application with every keystroke. :(
If you have a function that builds a lazy list/tree then reduces it again, a functional compiler may be able to optimize it using deforestation.
If it's tricky, it might not. Then you're sort of out of luck, performance & memory wise, unless you can iterate and use a mutable variable.
Thanks to the Church-Turing Thesis, we know that anything that can be written in a Turing-complete language can be written in any Turing-complete language. So, when you get right down to it, there's nothing you can't do in Lisp that you couldn't do in C#, if you tried hard enough, or vice versa. (More to the point, either one is going to get compiled down to x86 machine language in most cases anyway.)
So, the answer to your question is: there are no such cases. All there are are cases that are easier for humans to comprehend in one paradigm/language or another-- and the ease of comprehension here is tied to training and experience.
Perhaps the main issue here is the style of looping in a language. In langauges where we use recursion, any values changing over the course of a loop are re-bound when the function is called again. Languages using iterators in blocks (e.g., Smalltalk's and Ruby's inject method) tend to be similar, though many people in Ruby would still use each and a mutable variable over inject.
When you code loops using while and for, on the other hand, you don't have the easy re-binding of variables that comes automatically when you can pass in several parameters to your chunk of code that does one iteration of the loop, so immutable variables would be rather more inconvenient.
Working in Haskell is a really good way to investigate the necessity of mutable variables, since the default is immutable but mutable ones are available (as IORefs, MVars, and so on). I've been recently, er, "investigating" in this way myself, and have come to the following conclusions.
In the vast majority of cases, mutable variables are not necessary, and I'm happy living without them.
For inter-thread communication, mutable variables are essential, for fairly obvious reasons. (This is specific to Haskell; runtime systems that use message passing at the lowest level don't need them, of course.) However, this use is rare enough that having to use functions to read and write them (readIORef fooRef val etc.) is not much of a burden.
I have used mutable variables within a single thread, because it seemed to make certain things easier, but later regretted it as I realized that it became very hard to reason about what was happening to the value stored there. (Several different functions were manipulating that value.) This was a bit of an eye-opener; in typical frog-in-the-pot-of-warming-water style, I'd not realized how easy Haskell had made it for me to reason about the use of values until I ran into an example of how I used to use them.
So these days I've come down fairly firmly on the side of immutable variables.
Since previous answers to this question have confused these things, I feel compelled to point out here quite forcefully that this issue is orthogonal to both purity and functional programming. I feel that Ruby, for example, would benefit from having single-assignment local variables, though possibly a few other changes to the language, such as adding tail recursion, would be necessary to make this truly convenient.
What about when you need to make small changes to large data structures? You don't really want to copy a whole array or large class every time you would modify a few elements.
I haven't really thought about this much except now that you're pointing it out.
Actually I try not using multiple assignments subconsciously.
Here's an example of what Im talking about, in python
start = self.offset%n
if start:
start = n-start
Written this way to avoid an unneccesary extra Modulo or subtraction. This is used with bignum style long ints, so its a worthwhile optimization. Thing about it, though, is that it really is a single assignment.
I wouldn't miss multiple assignment at all.
I know you asked for code that did show the benefits of mutable variables. And I wish I could provide it. But as pointed out before - there is no problem that can't be expressed in both fashions. And especially since you pointed out that jpalecek's area of a polygon example could be written with a folding algo (which is IMHO way messier and takes the problem to different level of complexity) - well it made me wonder why you are coming down on mutability so hard. So I'll try to make the argument for a common ground and an coexistence of immutable and mutable data.
In my opinion this question misses the point a bit. I know that us programmers are prone to liking things clean and simple but we sometimes miss that a mixture is possible as well. And that's probably why in the discussion about immutability there is seldom somebody taking the middle ground. I just wonder why, because let's face it - immutability is a great tool of abstracting all kinds of problems. But sometimes it is a huge pain in the ass. Sometimes it simply is too constraining. And that alone makes me stop and thing - do we really want to loose mutability? Is it really either-or? Isn't there some common ground we can arrive at? When does immutability help me achieve my goals faster, when does mutability? Which solution is easier to read and maintain? (Which for me is the biggest question)
A lot of these questions are influenced by a programmer's taste and by what they are used to program in. So I'll focus on one of the aspects that is usually the center of most pro-immutability arguments - Parallelism:
Often parallelism is thrown into the argument surrounding immutability. I've worked on problem sets that required 100+ CPUs to solve in a reasonable time. And it has taught me one very important thing: Most of the time parallelizing the manipulation of graphs of data is really not the kind of thing that will be the most efficient way to parallelize. It sure can benefit greatly, but imbalance is a real problem in that problem-space. So usually working on multiple mutable graphs in parallel and exchanging information with immutable messages is way more efficient. Which means, when I know that the graph is isolated, that I have not revealed it to the outside world, I would like to perform my operations on it in the most concise manner I can think of. And that usually involves mutating the data. But after these operation on the data I want to open the data up to the whole world - and that's the point where I usually get a bit nervous, if the data is mutable. Because other parts of the program could corrupt the data, the state becomes invalid, ... because after opening up to the world the data often does get into the world of parallelism.
So real world parallel programs usually have areas where data graphs are used in definitive single thread operations - because they simply are not known to the outside - and areas where they could be involved in multi-threaded operations (hopefully just supplying data not being manipulated). During those multi-threaded parts we never want them to change - it simply is better to work on outdated data than on inconsistent data. Which can be guaranteed by the notion of immutability.
That made me come to a simple conclusion: The real problem for me is that non of the programming languages I am familiar with allow me to say: "After this point this whole data structure shal be immutable" and "give me a mutable copy of this immutable data structure here, please verify that only I can see the mutable copy". Right now I have to guarantee it myself by flipping a readonly bit or something similar. If we could have compiler support for it, not only would it guarantee for me that I did not do anything stupid after flipping said bit, but it could actually help the compiler do various optimizations that it couldn't do before. Plus - the language would still be attractive for programmers that are more familiar with the imperative programming model.
So to sum up. IMHO programs usually have a good reason to use both immutable and mutable representations of data graphs. I would argue that data should be immutable by default and the compiler should enforce that - but we should have the notion of private mutable representations, because there naturally are areas where multi-threading will never reach - and readability and maintainability could benefit from a more imperative structuring.

Resources