Andengine: Box2D extension vs Sprites for games - sprite

My question revolves around which technique's the best when implementing a game with AndEngine. In this game a user is able to do simple touch movements: drag, pinch and tap on certain objects which are represented by just sprites at the moment. At this time, the game doesn't really use any physics. The only thing that's being done regarding the sprites is pixel perfect collision detection (between sprites) and adding and removing these Sprites at real time. Just using Sprites gets the job done, but I was wondering if using the Box2D extension would be a better fit?
Which are the positive and negative points regarding using Box2D extension vs just the Sprites? And does one outweigh the other?

The box2D extension is obviously used for physics simulation in the game. Sprites are used for showing images on screen. So they are different concepts. But if you want to have more reliable collision detection you may need to use box2d for that, even if you do not use physics in your game. Sprite collision detection is not pixel perfect in andEngine.
So in regard to use of box2D:
'+ more reliable collsion detection
'+ you can use bodies as solid bodyies and bounce them automaticlay (calculated by box2D) or as sensors (they do not bounce but report colision (or overlapping) with another body/sensor
'- need to code more and implement bodies for allsprites involved in collisions
'- coding for collision detection of bodies (if you want to use them as sensors, not to bounce them) is a bit harder, but not too hard

Related

Render loop vs. explicitely calling update method

I am working on a 3D simulation program using openGL which uses a render loop with a fixed framerate to keep the screen updated as the world changes. Standard procedure really, and for a typical video game this is certainly the best approach (I originally took this code from an openGL game tutorial). But for me, the 3D scene will not be changing as rapidly and unpredictably as in a computer game. It will be possible for the 3D scene itself to change from time to time but in general it won't change between render calls (it's more of a visualisation tool for geometric problems). The user will be able to control the position/orientation of the camera but in general there will be times when the camera won't move for several seconds/minutes (potentially hundreds of render calls) and since the 3D scene is likely be static for the majority of the time, I wonder if I really need a continuous render loop...?
My thinking is that I will remove the automatic render loop and instead I will explicitly call my update method when either,
The 3D scene changes (very rare)
The camera moves (somewhat rare)
As I will be using this largely for research purposes, the scene/camera is likely to stay in one state for several minutes at a time and it seems silly to be continuously updating the frame buffer when it's not changing.
My question then is, is this a good approach? All the online tutorials for 3D graphics rendering seem to deal with game design but that's not really my requirement. In other words, what are the pros and cons of using a render loop vs. manually calling "update()" whenever something changes?
Thanks
There's no problem with this approach, in fact many 3D apps, like 3DS MAX use explicit rendering. You just pick what is better for your needs, in most games scene changes each frame so it's better to have update loop, but if you were doing some chess game, without animated UI you could also use explicit rendering only when the scene changes.
For apps with rare changes, like 3DS or Blender it would be better to call rendering only on change. This way you save the CPU/GPU but also power and your PC don't heat up so much.
With explicit rendering you can also have some performance tricks, like drawing simplified scene when camera moves, for better performance. Then when camera stops you render the full scene in background once again, and replace the low-quality rendering with the new one.

Low level graphics programming and ZBrush

After a while of 3d modelling and enjoying ZBrush's impeccable performance and numerous features I thought it would be great OpenGL practice for me to create something similar, just a small sculpting tool. Sure enough I got it done, I couldn't match ZBrush's performance of course seeing as how a brigade of well payed professionals outmatch a hobbyist. For the moment I just assumed ZBrush was heavily hardware accelerated, imagine my surprise when I found out it's not and furthermore it uses neither opengl or direct3d.
This made me want to learn graphics on a lower level but I have no clue where to start. How are graphics libraries made and how does one access the framebuffer without the use of opengl. How much of a hassle would it be to display just a single pixel without any preexisting tools and what magic gives ZBrush such performance.
I'd appreciate any info on any question and a recommendation for a book that covers any of these topics. I'm already reading Michael Abrash's Graphics Programming Black Book but it's not really addressing these matters or I just haven't reached that point yet.
Thank you in advance.
(Please don't post answers like "just use opengl" or "learn math", this seems to be the reaction everywhere I post this question but these replies are off topic)
ZBrush is godly in terms of performance but I think it's because it was made by image processing experts with assembly expertise (it's also likely due to the sheer amount of assembly code that they've been almost 20 years late in porting to 64-bit). It actually started out without any kind of 3D sculpting and was just a 2.5D "pixol" painter where you could spray pixels around on a canvas with some depth and lighting to the "pixols". It didn't get sculpting until around ZB 1.5 or so. Even then it impressed people with how fast you could spray these 2.5D "pixols" around on the canvas back when a similarly-sized brush just painting flat pixels with Photoshop or Corel Painter would have brought framerates to a stutter. So they were cutting-edge in performance even before they tackled anything 3D and were doing nothing more than spraying pixels on a canvas; that tends to require some elite micro-optimization wizardry.
One of the things to note about ZB when you're sculpting 20 million polygon models with it is that it doesn't even use GPU rasterization. All the rasterization is done in CPU. As a result it doesn't benefit from a beefy video card with lots of VRAM supporting the latest GLSL/HLSL versions; all it needs is something that can plot colored pixels to a screen. This is probably one of the reasons it uses so little memory compared to, say, MudBox, since it doesn't have to triple the memory usage with, say, VBOs (which tend to double system memory usage while also requiring the data to be stored on the GPU).
As for how you get started with this stuff, IMO a good way to get your feet wet is to write your own raytracer. I don't think ZBrush uses, say, scanline rasterization which tends to rise very proportionally in cost the more polygons you have, since they reduce the number of pixels being rendered at times like when you rotate the model. That suggests that whatever technique they're using for rasterization is more dependent in terms of performance by the number of pixels being rendered rather than the number of primitives (vertices/triangles/lines/voxels) being rendered. Raytracing fits those characteristics. Also IMHO a raytracer is actually easier to write than a scanline rasterizer since you don't have to bother with tricky cases so much and elimination of overdrawing comes free of charge.
Once you got a software where the cost of an operation is more in proportion to the number of pixels being rendered than the amount of geometry, then you can throw a boatload of polygons at it as they did all the way back when they demonstrated 20 million polygon sculpting at Siggraph with silky frame rates almost 17 years ago.
However, it's very difficult to get a raytracer to update interactively in response to mesh data that is being not only sculpted interactively, but sometimes having its topology being changed interactively. So chances are that they are using some data structure other than your standard BVH or KD-Tree as popular in raytracing, and instead a data structure which is well-suited for dynamic meshes that are not only deforming but also having their topology being changed. Maybe they can voxelize and revoxelize (or "pixolize" and "repixolize") meshes on the fly really quickly and cast rays directly into the voxelized representation. That would start to make sense given how their technology originally revolved around these 2.5D "pixels" with depth.
Anyway, I'd suggest raytracing for a start even if it's only just getting your feet wet and getting you nowhere close to ZB's performance just yet (it's still a very good start on how to translate 3D geometry and lighting into an attractive 2D image). You can find minimal examples of raytracers on the web written with just a hundred lines of code. Most of the work typically in building a raytracer is performance and also handling a rich diversity of shaders/materials. You don't necessarily need to bother with the latter and ZBrush doesn't so much either (they use these dirt cheap matcaps for modeling). Then you'll likely have to innovate some kind of data structure that's well-suited for mesh changes to start getting on par with ZB and micro-tune the hell out of it. That software is really on a whole different playing field.
I have likewise been so inspired by ZB but haven't followed in their footsteps directly, instead using the GPU rasterizer and OpenGL. One of the reasons I find it difficult to explore doing all this stuff on the CPU as ZB has is because you lose the benefits of so much industrial research and revolutionary techniques that game engines and NVidia and AMD have come up with into lighting models in realtime and so forth that all benefit from GPU-side processing. There's 99% of the 3D industry and then there's ZBrush in its own little corner doing things that no one else is doing and you need a lot of spare time and maybe a lot of balls to abandon the rest of the industry and try to follow in ZB's footsteps. Still I always wish I could find some spare time to explore a pure CPU rasterizing engine like ZB since they still remain unmatched when your goal is to directly interact with ridiculously high-resolution meshes.
The closest I've gotten to ZB performance was sculpting 2 million polygon meshes at over 30 FPS back in the late 90s on an Athlon T-Bird 1.2ghz with 256MB of RAM, and that was after 6 weeks of intense programming and revisiting the drawing board over and over in a very simplistic demo, and that was a very rare time where my company gave me so much R&D time to explore what ZB was doing. Still, ZB was handling 5 times that geometry at the same frame rates even at that time and on the same hardware and using half the memory. I couldn't even get close, though I did end up with a newfound respect and admiration for the programmers at Pixologic. I also had to insist to my company to do the research. Some of the people there thought ZBrush would never become anything noteworthy and would just remain a cutesy artistic application. I thought the opposite since I saw something revolutionary long before it acquired such an epic following.
A lot of people at the time thought ZB's ability to handle so many polygons was impractical and that you could just paint bump/normal/displacement maps and add whatever details you needed into textures. But that's ignoring the workflow side of things. When you can just work straight with epic amounts of geometry, you get to uniformly apply the same tools and workflow to select vertices, polygons, edges, brush over things, etc. It becomes the most straightforward way to create such a detailed and complex model, after which you can bake out the details into bump/normal/displacement maps for use in other engines that would vomit on 20 million polygons. Nowadays I don't think anyone still questions the practicality of ZB.
[...] but it's not really addressing these matters or I just haven't
reached that point yet.
As a caveat, no one has published anything on how to achieve performance rivaling ZB. Otherwise there would be a number of applications rivaling its performance and features when it comes to sculpting, dynamesh, zspheres, etc and it wouldn't be so amazingly special. You definitely need your share of R&D to come up with anything close to it, but I think raytracing is a good start. After that you'll likely need to come up with some really interesting ideas for algorithms and data structures in addition to a lot of micro-tuning.
What I can say with a fair degree of confidence is that:
They have some central data structure to accelerate rasterization that can update extremely quickly in response to changes the user makes to a mesh (including topological ones).
The cost of rasterization is more in proportion to the number of pixels rendered rather than the size of the 3D input.
There's some micro-optimization wizardry in there, including straight up assembly coding (I'm quite certain ZB uses assembly coding since they were originally requiring programmers to have both assembly and C++ knowledge back when they were hiring in the 2000s; I really wanted to work at Pixologic but lacked the prerequisite assembly skills).
Whatever they use is pretty light on memory requirements given that the models are so dynamic. Last time I checked, they use less than 100MB per million polygons even when loading in production models with texture maps. Competing 3D software with the exception of XSI can take over a gigabyte for the same data. XSI uses even less memory than ZB with its gigapoly core but is ill-suited to manipulating such data, slowing down to a crawl (they probably optimized it in a way that's only well-suited for static data like offloading data to disk or even using some expensive forms of compression).
If you're really interested in exploring this, I'd be interested to see what you can come up with. Maybe we can exchange notes. I've devoted much of my career just being interested in figuring out what ZB is doing, or at least coming up with something of my own that can rival what it's doing. For just about everything else I've tackled over the years from raytracing to particle simulations to fluid dynamics and video processing and so forth, I've been able to at least come up with demos that rival or surpass the performance of the competition, but not ZBrush. ZBrush remains that elusive thorn in my side where I just can't figure out how they manage to be so damned efficient at what they do.
If you really want to crawl before you even begin to walk (I think raytracing is a decent enough start, but if you want to start out even more fundamental) then maybe a natural evolution is to first just focus on image processing: filtering images, painting them with brushes, etc, along with some support for basic vector graphics like a miniature Photoshop/Illustrator. Then work your way up to rasterizing some basic 3D primitives, like maybe just a wireframe of a model being rendered using Wu line rasterization and some basic projection functions. Then work your way towards rasterizing filled triangles without any lighting or texturing, at which point I think you'll get closer to ZBrush focusing on raytracing rather than scanline with a depth buffer. However, doing a little bit of the latter might be a useful exercise anyway. Then work on rendering lit triangles, maybe starting with direct lighting and just a single light source, just computing a luminance based on the angle of the normal relative to the light source. Then work towards textured triangles using baycentric coordinates to figure out what texels to render. Then work towards indirect lighting and multiple light sources. That should be plenty of homework for you to develop a fairly comprehensive idea of the fundamentals of rasterization.
Now once you get to raytracing, I'm actually going to recommend one of the least efficient data structures for the job typically: octrees, not BVH or KD-Tree, mainly because I believe octrees are probably closer to allowing what ZB allows. Your bottlenecks in this context don't have to do with rendering the most beautiful images with complex diffuse materials and indirect lighting and subpixel samples for antialiasing. It has to do with handling a boatload of geometry with simple lighting and simple shaders and one sample per pixel which is changing on the fly, including topologically. Octrees seem a little better suited in that case than KD-tree or BVHs as a starting point.
One of the problems with ignoring the fundamentals these days is that a lot of young developers have lost that connection from, say, triangle to pixel on the screen. So if you don't want to take such rasterization and projection for granted, then your initial goal is to project 3D data into a 2D coordinate space and rasterize it.
If you want a book that starts at a low level, with framebuffers and such, try Computer Graphics: Principles and Practice, by Foley, van Dam, et al. It is an older, traditional text, but newer books tend to have a higher-level view. For a more modern text, I can also recommend 3D Computer Graphics by Alan Watt. There are plenty of other good introductory texts available -- these are just two that I am personally familiar with.
Neither of the above books are tied to OpenGL -- if I recall correctly, they include the specific math and algorithms necessary to understand and implement 3D graphics from the bottom up.

How do I create a real-time rendering window from scratch?

I've been studying 3D graphics on my own for a while now and I want to get a greater understanding of just how everything works. What I would like to do is to create a simple game without using DirectX or OpenGL. I understand most of the math I believe, but the problem I am running up against is I do not know how to get control of the pixels being displayed in a window.
How do I specify what color I want each pixel in my window to be?
I understand I will probably run into issues with buffers and image shearing and probably terrible efficiency problems, but I want to create my own program so that I could see from the very lowest level, of the high level language, how the rendering process works. I really have no idea where to start though. I've figured out how to output BMPs, but I would like to have a running program spitting out 20+ frames per second. How do I accomplish this?
You could pick a environment that allows you to fill an array with values for pixels and display it as a bitmap. This way you come closest to poking RGB values in video memory. WPF, Silverlight, HTML5/Javascript can do this. If you do not make it full screen these technologies should suffice for now.
In WPF and Silverlight, use the WriteableBitmap.
In HTML5, use the canvas
Then it is up to you to implement the logic to draw lines, circles, bezier curves, 3D projections.
This is a lot of fun and you will learn a lot.
I'm reading between the lines that you're more interested in having full control over the rendering process from a low level, rather than having a specific interest in how to achieve that on one specific platform.
If that's the case then you will probably get a good bang for your buck looking at a library like SDL which provides you with a frame buffer that you can render to directly but abstracts away a lot of the platform specifics issues. It has been around for quite a while and there are some good tutorials to give you an idea of whether it's the kind of thing you're looking for - see this tutorial and the subsequent one in the same series, which should be enough to get you up and running.
You say you want to create some kind of a rendering engine, meaning desinging you own Pipeline and matrice classes. Which you are to use to transform 3D coordinates to 2D points.
When you have got the 2D points you've been looking for. You can use say for instance on windows, you can select a brush and draw you triangle values while coloring them at the same time.
I do not know why you would need Bitmaps, but if you want to practice say Texturing you can also do that yourself although off course on a weak computer this might take your frames per second significantly.
If you aim is to understand how rendering works on the lowest level. This is with no doubt a good practice.
Jt Schwinschwiga

Is a drag-and-drop interface simply infeasible in Pygame?

I'm building a simple RPG using Pygame and would like to implement a drag-and-drop inventory. However, even with the consideration of blitting a separate surface, it seems that the entire screen will need to be recalculated every single time the user drags an item around. Would it be best to allow a limited range of motion, or is it simply not feasible to implement such an interface?
redrawing most or all of the screen is a very normal thing, across all windowing systems. this is rarely an issue, since most objects on screen can be drawn quickly.
To make this practical, it's necessary to organize all of the game objects that have to be drawn in such a way that they can be quickly found and drawn in the right order. This often means that objects of a particular type are grouped into some sort of layer. The drawing code can go through each layer, and for each object in each layer, ask the object to draw itself. If a particular layer is costly to draw, because it's got a lot of objects, can store a prerendered surface and blit that instead.
A really simple hack to get a similar effect is to capture the screen at the start of a drag to a surface, and then blit that every frame instead of the whole game. This obviously only makes sense in a game where dragging also means that the rest of the game is effectively paused.
There are many GUI examples on pygame.org, as well as libraries for GUIs.

How to generate sprite art assets for different resolution screens?

I'm working on a game using OpenGL displaying sprites, i.e. 2d quad-mapped graphics with no projection, that will be displayed on several different resolution screens. (i.e. iPhone retina/non-retina, iPad.. my next project the problem will expand to desktop resolutions which are far more numerous)
I'm OK with handling different aspect ratios, that can be handled by opengl and my placement of the sprites. I'm also OK with slightly different resolutions - use same art and either border the screen, or display a little bit more info.. but when things start to grow/shrink by like 50%+ it's a major issue.
What is standard procedure for generating the art assets in this situation? Generate for the largest resolution and just let OpenGL worry about resizing during it's rasterizing, or do people generate art sets for each main resolution?
Rasterized sprite art tends to get ugly when it's stretched (interpolated), so I'm concerned.. but generating different sizes really means for practical purposes I have to go with vector drawings and export several resolutions. Limits the artist and is somewhat complicated as far as loading and managing the assets
(Yes, I can "just try it" to an extent, but I already have an idea of the results. I'm looking for solutions people use and angles I maybe wouldn't have thought of. This question does have an answer(s) it's not subjective or lazy)
You are correct that scaling bitmaps tends to make sprites bad. There are a couple of ways of dealing with that:
Draw them (pixelart) at all required resolutions. That is a lot of work but gives you full control.
Draw them (vectors) and render them at all required resolutions. Less work but scaling up or down beyond 50% or 200% might give bad results.
Draw them (3D appliction) and render them at all required resolutions. Quite some work but a very consistent set of sprites.
For each of these options you are free to post-process the bitmaps to clean them up or add details but if you do this for options 2 and 3, you are breaking the chain and will have to apply the changes again when rendering the same set again.
An other option is to limit the variation of resolutions.
As far as I know it is very common in the (game) industry to make all (or the most used/visible) sprites as pixel perfect as possible. This is what they pay the artists for...

Resources