I have a java file which uses java.sql.Statement.execute as below.
public class Dummy
{
public void execute(String q) throws SQLException
{
...
Statement stmt = conn.createStatement();
...
stmt.execute(q);
...
}
}
My use case is I want to identify what are all the classes and their method names which use "Statement.execute(String)" using JDT ASTVisitor. Is this possible?
I found below entry using eclipse ASTView plugin.
method binding: Statement.execute(String)
How can I get this method binding value in my ASTVisitor.
I tried this.
#Override
public boolean visit(MethodInvocation node)
{
IMethodBinding iMethod = (IMethodBinding) node.resolveMethodBinding();
if(iMethod != null)
System.out.println("Binding "+iMethod.getName());
return super.visit(node);
}
but node.resolveMethodBinding() always returns null.
... i want to identify what are all the classes and its method names which using "Statement.execute(String)"
This sounds like a job for the org.eclipse.jdt.core.search.SearchEngine, which will produce the results much faster than traversing all your source files using a visitor.
... node.resolveMethodBinding() always returns null
This depends on how you obtained the AST. See, e.g., org.eclipse.jdt.core.dom.ASTParser.setResolveBindings(boolean)
Related
So I have recently migrated to v6 and I will try to simplify my question
I have the following class
#AllArgsConstructor
public class Songs {
String title;
List<String> genres;
}
In my scenario I want to have something like:
Then The results are as follows:
|title |genre |
|happy song |romance, happy|
And the implementation should be something like:
#Then("Then The results are as follows:")
public void theResultsAreAsFollows(Songs song) {
//Some code here
}
I have the default transformer
#DefaultParameterTransformer
#DefaultDataTableEntryTransformer(replaceWithEmptyString = "[blank]")
#DefaultDataTableCellTransformer
public Object transformer(Object fromValue, Type toValueType) {
ObjectMapper objectMapper = new ObjectMapper();
return objectMapper.convertValue(fromValue, objectMapper.constructType(toValueType));
}
My current issue is that I get the following error: Cannot construct instance of java.util.ArrayList (although at least one Creator exists)
How can I tell cucumber to interpret specific cells as lists? but keeping all in the same step not splitting apart? Or better how can I send an object in a steps containing different variable types such as List, HashSet, etc.
If I do a change and replace the list with a String everything is working as expected
#M.P.Korstanje thank you for your idea. If anyone is trying to find a solution for this here is the way I did it as per suggestions received. Inspected to see the type fromValue has and and updated the transform method into something like:
if (fromValue instanceof LinkedHashMap) {
Map<String, Object> map = (LinkedHashMap<String, Object>) fromValue;
Set<String> keys = map.keySet();
for (String key : keys) {
if (key.equals("genres")) {
List<String> genres = Arrays.asList(map.get(key).toString().split(",", -1));
map.put("genres", genres);
}
return objectMapper.convertValue(map, objectMapper.constructType(toValueType));
}
}
It is somehow quite specific but could not find a better solution :)
I'm running into a problem with GroovyScriptEngine - it seems not to be able to work with inner classes. Anyone know whether there's some limitation in GroovyScriptEngine or a workaround?
I have a directory with these two files:
// MyClass.groovy
public class MyClass {
MyOuter m1;
MyOuter.MyInner m2;
}
and
// MyOuter.groovy
public class MyOuter {
public static class MyInner {}
}
I have a following test class:
import java.io.File;
import java.net.MalformedURLException;
import java.net.URL;
import groovy.util.GroovyScriptEngine;
public class TestGroovyScriptEngine {
public static void main(String[] args) throws MalformedURLException, ClassNotFoundException {
final File myGroovySourceDir = new File("C:/MyGroovySourceDir");
final URL[] urls = { myGroovySourceDir.toURL() };
GroovyScriptEngine groovyScriptEngine = new GroovyScriptEngine(urls,
Thread.currentThread().getContextClassLoader());
Class<?> clazz = groovyScriptEngine.getGroovyClassLoader().loadClass("MyClass");
}
}
When I run it I get the following compilation error:
Exception in thread "main" org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
C:\MyGroovySourceDir\MyClass.groovy: 3: unable to resolve class MyOuter.MyInner
# line 3, column 2.
MyOuter.MyInner m2;
^
1 error
at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:311)
at org.codehaus.groovy.control.CompilationUnit.applyToSourceUnits(CompilationUnit.java:983)
at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:633)
at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:582)
at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:354)
at groovy.lang.GroovyClassLoader.access$300(GroovyClassLoader.java:87)
at groovy.lang.GroovyClassLoader$5.provide(GroovyClassLoader.java:323)
at groovy.lang.GroovyClassLoader$5.provide(GroovyClassLoader.java:320)
at org.codehaus.groovy.runtime.memoize.ConcurrentCommonCache.getAndPut(ConcurrentCommonCache.java:147)
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:318)
at groovy.util.GroovyScriptEngine$ScriptClassLoader.doParseClass(GroovyScriptEngine.java:248)
at groovy.util.GroovyScriptEngine$ScriptClassLoader.parseClass(GroovyScriptEngine.java:235)
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:307)
at groovy.lang.GroovyClassLoader.recompile(GroovyClassLoader.java:811)
at groovy.lang.GroovyClassLoader.loadClass(GroovyClassLoader.java:767)
at groovy.lang.GroovyClassLoader.loadClass(GroovyClassLoader.java:836)
at groovy.lang.GroovyClassLoader.loadClass(GroovyClassLoader.java:824)
I would have expected a "clean compile", but the inner class seems to be causing problems.
My groovy classes compile fine at the command line using groovyc, or in Eclipse.
You have faced an edge case here. To clarify what happens let's define the initial conditions:
you have a Java (or Groovy) class that gets executed inside JVM
you have two Groovy classes that get loaded outside of the JVM
The problem you have described does not exist if you put these two Groovy classes inside the same path you execute your Java class from - in this case IDE takes care to compile these Groovy classes and put them to the classpath of a JVM that gets started to run your Java test class.
But this is not your case and you are trying to load these two Groovy classes outside the running JVM using GroovyClassLoader (which extends URLClassLoader btw). I will try to explain in the simplest possible words what happened that adding field of type MyOuter does not throw any compilation error, but MyOuter.MyInner does.
When you execute:
Class<?> clazz = groovyScriptEngine.getGroovyClassLoader().loadClass("MyClass");
Groovy class loader goes to script file lookup part, because it was not able to find MyClass in the current classpath. This is the part responsible for it:
// at this point the loading from a parent loader failed
// and we want to recompile if needed.
if (lookupScriptFiles) {
// try groovy file
try {
// check if recompilation already happened.
final Class classCacheEntry = getClassCacheEntry(name);
if (classCacheEntry != cls) return classCacheEntry;
URL source = resourceLoader.loadGroovySource(name);
// if recompilation fails, we want cls==null
Class oldClass = cls;
cls = null;
cls = recompile(source, name, oldClass);
} catch (IOException ioe) {
last = new ClassNotFoundException("IOException while opening groovy source: " + name, ioe);
} finally {
if (cls == null) {
removeClassCacheEntry(name);
} else {
setClassCacheEntry(cls);
}
}
}
Source: src/main/groovy/lang/GroovyClassLoader.java#L733-L753
Here URL source = resourceLoader.loadGroovySource(name); it loads the full file URL to the source file and here cls = recompile(source, name, oldClass); it executes class compilation.
There are several phases involved in Groovy class compilation. One of them is Phase.SEMANTIC_ANALYSIS which analyses class fields and their types for instance. At this point ClassCodeVisitorSupport executes visitClass(ClassNode node) for MyClass class and following line
node.visitContents(this);
starts class contents processing. If we take a look at the source code of this method:
public void visitContents(GroovyClassVisitor visitor) {
// now let's visit the contents of the class
for (PropertyNode pn : getProperties()) {
visitor.visitProperty(pn);
}
for (FieldNode fn : getFields()) {
visitor.visitField(fn);
}
for (ConstructorNode cn : getDeclaredConstructors()) {
visitor.visitConstructor(cn);
}
for (MethodNode mn : getMethods()) {
visitor.visitMethod(mn);
}
}
Source: src/main/org/codehaus/groovy/ast/ClassNode.java#L1066-L108
we will see that it analyses and process class properties, fields, constructors and methods. At this phase it resolves all types defined for these elements. It sees that there are two properties m1 and m2 with types MyOuter and MyOuter.MyInner accordingly, and it executes visitor.visitProperty(pn); for them. This method executes the one we are looking for - resolve()
private boolean resolve(ClassNode type, boolean testModuleImports, boolean testDefaultImports, boolean testStaticInnerClasses) {
resolveGenericsTypes(type.getGenericsTypes());
if (type.isResolved() || type.isPrimaryClassNode()) return true;
if (type.isArray()) {
ClassNode element = type.getComponentType();
boolean resolved = resolve(element, testModuleImports, testDefaultImports, testStaticInnerClasses);
if (resolved) {
ClassNode cn = element.makeArray();
type.setRedirect(cn);
}
return resolved;
}
// test if vanilla name is current class name
if (currentClass == type) return true;
String typeName = type.getName();
if (genericParameterNames.get(typeName) != null) {
GenericsType gt = genericParameterNames.get(typeName);
type.setRedirect(gt.getType());
type.setGenericsTypes(new GenericsType[]{ gt });
type.setGenericsPlaceHolder(true);
return true;
}
if (currentClass.getNameWithoutPackage().equals(typeName)) {
type.setRedirect(currentClass);
return true;
}
return resolveNestedClass(type) ||
resolveFromModule(type, testModuleImports) ||
resolveFromCompileUnit(type) ||
resolveFromDefaultImports(type, testDefaultImports) ||
resolveFromStaticInnerClasses(type, testStaticInnerClasses) ||
resolveToOuter(type);
}
Source: src/main/org/codehaus/groovy/control/ResolveVisitor.java#L343-L378
This method gets executed for both MyOuter and MyOuter.MyInner classes. It is worth mentioning that class resolving mechanism only checks if given class is available in the classpath and it does not load or parse any classes. That is why MyOuter gets recognized when this method reaches resolveToOuter(type). If we take a quick look at its source code we will understand why it works for this class:
private boolean resolveToOuter(ClassNode type) {
String name = type.getName();
// We do not need to check instances of LowerCaseClass
// to be a Class, because unless there was an import for
// for this we do not lookup these cases. This was a decision
// made on the mailing list. To ensure we will not visit this
// method again we set a NO_CLASS for this name
if (type instanceof LowerCaseClass) {
classNodeResolver.cacheClass(name, ClassNodeResolver.NO_CLASS);
return false;
}
if (currentClass.getModule().hasPackageName() && name.indexOf('.') == -1) return false;
LookupResult lr = null;
lr = classNodeResolver.resolveName(name, compilationUnit);
if (lr!=null) {
if (lr.isSourceUnit()) {
SourceUnit su = lr.getSourceUnit();
currentClass.getCompileUnit().addClassNodeToCompile(type, su);
} else {
type.setRedirect(lr.getClassNode());
}
return true;
}
return false;
}
Source: src/main/org/codehaus/groovy/control/ResolveVisitor.java#L725-L751
When Groovy class loader tries to resolve MyOuter type name it reaches
lr = classNodeResolver.resolveName(name, compilationUnit);
which locates script with a name MyOuter.groovy and it creates a SourceUnit object associated with this script file name. It is simply something like saying "OK, this class is not in my classpath at the moment, but there is a source file I can see that once compiled it will provide a valid type of name MyOuter". This is why it finally reaches:
currentClass.getCompileUnit().addClassNodeToCompile(type, su);
where currentClass is an object associated with MyClass type - it adds this source unit to MyClass compilation unit, so it gets compiled with the MyClass class. And this is the point where resolving
MyOuter m1
class property ends.
In the next step it picks MyOuter.MyInner m2 property and it tries to resolve its type. Keep in mind - MyOuter got resolved correctly, but it didn't get loaded to the classpath, so it's static inner class does not exist in any scope, yet. It goes through the same resolving strategies as MyOuter, but any of them works for MyOuter.MyInner class. And this is why ResolveVisitor.resolveOrFail() eventually throws this compilation exception.
Workaround
OK, so we know what happens, but is there anything we can do about it? Luckily, there is a workaround for this problem. You can run your program and load MyClass successfully only if you load MyOuter class to Groovy script engine first:
import java.io.File;
import java.net.MalformedURLException;
import java.net.URL;
import groovy.util.GroovyScriptEngine;
public class TestGroovyScriptEngine {
public static void main(String[] args) throws MalformedURLException, ClassNotFoundException {
final File myGroovySourceDir = new File("C:/MyGroovySourceDir");
final URL[] urls = { myGroovySourceDir.toURL() };
GroovyScriptEngine groovyScriptEngine = new GroovyScriptEngine(urls,
Thread.currentThread().getContextClassLoader());
groovyScriptEngine.getGroovyClassLoader().loadClass("MyOuter");
Class<?> clazz = groovyScriptEngine.getGroovyClassLoader().loadClass("MyClass");
}
}
Why does it work? Well, semantic analysis of MyOuter class does not cause any problems, because all types are known at this stage. This is why loading MyOuter class succeeds and it results in Groovy script engine instance knows what MyOuter and MyOuter.MyInner types are. So when you next load MyClass from the same Groovy script engine it will apply different resolving strategy - it will find both classes available to the current compilation unit and it wont have to resolve MyOuter class based on its Groovy script file.
Debugging
If you want to examine this use case better it is worth to run a debugger and see analyze what happens at the runtime. You can create a breakpoint at line 357 of ResolveVisitor.java file for instance, to see described scenario in action. Keep in mind one thing though - resolveFromDefaultImports(type, testDefaultImports) will try to lookup MyClass and MyOuter classes by applying default packages like java.util, java.io, groovy.lang etc. This resolve strategy kicks in before resolveToOuter(type) so you have to patiently jump through them. But it is worth it to see and get a better understanding about how things work. Hope it helps!
I want to be sure that mocked is called with specific set of strings as parameter.
For example, I have the following code:
public class SomeLogic {
#Autowired
private SpecificService specificService;
public void action() {
Set<String> args = fillArgsMethod();
specificService.handleArgs(args);
}
}
And my current try to test it is the following
#Mock
private SpecificService specificService
#InjectMocks
private SomeLogic someLogic;
#Test
public void testAction() {
someLogic.action();
verify(specificService).handleArgs(anySet());
}
But I want to be sure, that handleArgs() will receive the exact set of strings, that I expect. How can I modify verifying to check that handleArgs is called with set "first","second"?
Thanks
Isah gave a valid answer, but I want to turn your attention to a more general feature of Mockito which is ArgumentCaptor
In you case you would do something along the following lines:
Class<HashSet<String>> setClass = (Class<HashSet<String>>)(Class)HashSet.class;
ArgumentCaptor<Set<String>> setCaptor= ArgumentCaptor.forClass(setClass .class);
verify(specificService).create(setCaptor.capture());
HashSet<String> capturedSet = setCaptor.getValue();
//do whatever test you want with capturedSet
Prepare your Set parameters before calling the test method
#Test
public void testAction() {
Set<String> expectedParams = new HashSet(Arrays.asList("first", "second");
//call tested method
verify(specificService).handleArgs(expectedParams);
}
isah's solution is perfect for you if you want to confirm that the set contains exactly the two items you specify; Mockito compares using .equals by default, and Set.equals is defined as refer to equal elements in any order.
For a more-flexible "contains" test that matches your question title, that allows for set members beyond your expected values, you can also use the Hamcrest contains matcher:
someLogic.action();
verify(specificService).handleArgs(argThat(contains("first", "second")));
At least, that's how it should look. Unfortunately, argThat infers its return type from the Matcher, which infers its return type from the arguments, so Java assumes your first argument is not a Set<String> but a Iterable<capture#1-of ? extends String>. You'll need to cast explicitly and suppress warnings to get it to work:
// requires #SuppressWarnings("unchecked")
verify(specificService).handleArgs(
(Set<String>) argThat(contains("first", "second")));
I need to perform additional modifying of all Strings, is it possible to make a ValueConverter with a Target Type of String, or if not, in what other way can I do it?
class StringValueConverter implements ValueConverter {
#Override
boolean canConvert(Object value) {
value instanceof String
}
#Override
Object convert(Object value) {
//modifying value
}
#Override
Class<?> getTargetType() {
return String
}
}
I need to do it before binding
In Groovy yes you can. There are various ways:
Using Extension Module is one of them.
Another way would be to use runtime metaprogramming, for example:
String.metaClass.flip = {
delegate.reverse()
}
assert "Hello".flip() == "olleH"
Above is a contrived example of adding methods to metaClass of String, but a convert method as in your example can fit in as well.
However, the extension module is what can be robust in your case if you are looking for adding sanity by canConvert which would not be needed for runtime metaClass methods as they are only available for String class.
Writing a simple JSF application I've some across the following Problem:
My entities.controller.EntityNameManager class contains a method getEntityNameSelectList() which I can use to populate a ComboBox with. This works and shows all Entities, since the Method to retrieve the Entities does not have a where clause.
This Method was automatically created.
Now I want to have a second similar Method, that filters the options based on a variable in the sessionscope. To do this I copied the original Method, renamed it to getEntityNameSelectListByUser(User theUser) and changed the Method that queries the database to one that does indeed filter by UserId.
However, when trying to load the page in the browser, I get an error stating that the controller class does not have a "EntityNameSelectListByUser" property. I assume that since my new method expects a parameter it can't be found. Is there a way I can make it aware of the Parameter or the Sessionscope userid?
Support for parameters in EL is slated for the next maintenance release of JSR 245 (announcement here; implementation here).
Assuming you don't want to wait for JEE6, you have several ways to overcome this limitation. These approached are defined in terms of POJO managed beans, so adapt them to your EJBs as appropriate.
1.
Do the session lookup and function call in a backing bean:
public String getFoo() {
FacesContext context = FacesContext
.getCurrentInstance();
ExternalContext ext = context.getExternalContext();
String bar = (String) ext.getSessionMap().get("bar");
return getFoo(bar);
}
Example binding:
#{paramBean.foo}
2.
Use an EL function (defined in a TLD, mapped to a public static method):
public static String getFoo(ParamBean bean, String bar) {
return bean.getFoo(bar);
}
Example binding:
#{baz:getFoo(paramBean, bar)}
3.
Subvert the Map class to call the function (a bit of a hack and limited to one parameter):
public Map<String, String> getFooMap() {
return new HashMap<String, String>() {
#Override
public String get(Object key) {
return getFoo((String) key);
}
};
}
Example binding:
#{paramBean.fooMap[bar]}