I need to process data from a set of streams, applying the same elaboration to each stream independently from the other streams.
I've already seen frameworks like storm, but it appears that it allows the processing of static streams only (i.e. tweets form twitter), while I need to process data from each user separately.
A simple example of what I mean could be a system where each user can track his gps location and see statistics like average velocity, acceleration, burnt calories and so on in real time. Of course, each user would have his own stream(s) and the system should process the stream of each user separately, as if each user had its own dedicated topology processing his data.
Is there a way to achieve this with a framework like storm, spark streaming or samza?
It would be even better if python is supported, since I already have a lot of code I'd like to reuse.
Thank you very much for your help
Using Storm, you can group data using fields-grouping connection pattern if you have a user-id in your tuples. This ensures, that data is partitioned by user-id and thus you get logical substreams. Your code only needs to be able to process multiple groups/substreams, because a single bolt instance gets multiple groups for processing. But Storm supports your use case for sure. It also can run Python code.
In Samza, similar to Storm, one would partition the individual streams on some user ID. This would guarantee that the same processor would see all the events for some particular user (as well as other user IDs that the partition function [a hash, for instance] assigns to that processor). Your description sounds like something that would more likely run on the client's system rather than being a server-side operation, however.
Non-JVM language support has been proposed for Samza, but not yet implemented.
You can use WSO2 Stream Processor to achieve this. You can partition the input stream by user-name and process events pertain to each user separately. The processing logic has to be written in Siddhi QL which is a SQL like language.
WSO2 SP also has a python wrapper to, it will allow you do perform administrative tasks such as submitting, editing jobs. But you can't write processing logic using python code.
Related
As you know, Kappa architecture is some kind of simplification of Lambda architecture. Kappa doesn't need batch layer, instead speed layer have to guarantee computation precision and enough throughput (more parallelism/resources) on historical data re-computation.
Still Kappa architecture requires two serving layers in case when you need to do analytic based on historical data. For example, data that have age < 2 weeks are stored at Redis (streaming serving layer), while all older data are stored somewhere at HBase (batch serving layer).
When (due to Kappa architecture) I have to insert data to batch serving layer?
If streaming layer inserts data immidiately to both batch & stream serving layers - than how about late data arrival? Or streaming layer should backup speed serving layer to batch serving layer on regular basis?
Example: let say source of data is Kafka, data are processed by Spark Structured Streaming or Flink, sinks are Redis and HBase. When write to Redis & HBase should happen?
If we perform stream processing, we want to make sure that output data is firstly made available as a data stream. In your example that means we write to Kafka as a primary sink.
Now you have two options:
have secondary jobs that reads from that Kafka topic and writes to Redis and HBase. That is the Kafka way, in that Kafka Streams does not support writing directly to any of these systems and you set up a Kafka connect job. These secondary jobs can then be tailored to the specific sinks, but they add additional operations overhead. (That's a bit of the backup option that you mentioned).
with Spark and Flink you also have the option to have secondary sinks directly in your job. You may add additional processing steps to transform the Kafka output into a more suitable form for the sink, but you are more limited when configuring the job. For example in Flink, you need to use the same checkpointing settings for the Kafka sink and the Redis/HBase sink. Nevertheless, if the settings work out, you just need to run one streaming job instead of 2 or 3.
Late events
Now the question is what to do with late data. The best solution is to let the framework handle that through watermarks. That is, data is only committed at all sinks, when the framework is sure that no late data arrives. If that doesn't work out because you really need to process late events even if they arrive much, much later and still want to have temporary results, you have to use update events.
Update events
(as requested by the OP, I will add more details to the update events)
In Kafka Streams, elements are emitted through a continuous refinement mechanism by default. That means, windowed aggregations emit results as soon as they have any valid data point and update that result while receiving new data. Thus, any late event is processed and yield an updated result. While this approach nicely lowers the burden to users, as they do not need to understand watermarks, it has some severe short-comings that led the Kafka Streams developers to add Suppression in 2.1 and onward.
The main issue is that it poses quite big challenges to downward users to process intermediate results as also explained in the article about Suppression. If it's not obvious if a result is temporary or "final" (in the sense that all expected events have been processed) then many applications are much harder to implement. In particular, windowing operations need to be replicated on consumer side to get the "final" value.
Another issue is that the data volume is blown up. If you'd have a strong aggregation factor, using watermark-based emission will reduce your data volume heavily after the first operation. However, continuous refinement will add a constant volume factor as each record triggers a new (intermediate) record for all intermediate steps.
Lastly, and particularly interesting for you is how to offload data to external systems if you have update events. Ideally, you would offload the data with some time lag continuously or periodically. That approach simulates the watermark-based emission again on consumer side.
Mixing the options
It's possible to use watermarks for the initial emission and then use update events for late events. The volume is then reduced for all "on-time" events. For example, Flink offers allowed lateness to make windows trigger again for late events.
This setup makes offloading data much easier as data only needs to be re-emitted to the external systems if a late event actually happened. The system should be tweaked that a late event is a rare case though.
I'm still quite new to the world of stream and batch processing and trying to understnad concepts and speach. It is admitedly very possible that the answer to my question well known, easy to find or even answered a hundred times here at SO, but I was not able to find it.
The background:
I am working in a big scientific project (nuclear fusion research), and we are producing tons of measurement data during experiment runs. Those data are mostly streams of samples tagged with a nanosecond timestamp, where samples can be anything from a single by ADC value, via an array of such, via deeply structured data (with up to hundreds of entries from 1 bit booleans to 64bit double precision floats) to raw HD video frames or even string text messages. If I understand the common terminologies right, I would regard our data as "tabular data", for the most part.
We are working with mostly selfmade software solutions from data acquisition over simple online (streaming) analysis (like scaling, subsampling and such) to our own data sotrage, management and access facilities.
In view of the scale of the operation and the effort for maintaining all those implementations, we are investigating the possibilities to use standard frameworks and tools for more of our tasks.
My question:
In particular at this stage, we are facing the need for more and more sofisticated (automated and manual) data analytics on live/online/realtime data as well as "after the fact" offline/batch analytics of "historic" data. In this endavor, I am trying to understand if and how existing analytics frameworks like Spark, Flink, Storm etc. (possibly supported by message queues like Kafka, Pulsar,...) can support a scenario, where
data is flowing/streamed into the platform/framework, attached an identifier like a URL or an ID or such
the platform interacts with integrated or external storage to persist the streaming data (for years), associated with the identifier
analytics processes can now transparently query/analyse data addressed by an identifier and an arbitrary (open or closed) time window, and the framework suplies data batches/samples for the analysis either from backend storage or coming in live from data acquisition
Simply streaming the online data into storage and querying from there seems no option as we need both raw and analysed data for live monitoring and realtime feedback control of the experiment.
Also, letting the user query either a live input signal or a historic batch from storage differently would not be ideal, as our physicists mostly are no data scientists and we would like to keep such "technicalities" away from them and idealy the exact same algorithms should be used for analysing new real time data and old stored data from previous experiments.
Sitenotes:
we are talking about peek data loads in the range of 10th of gigabits per second coming in bursts of increasing length of seconds up to minutes - could this be handled by the candidates?
we are using timestamps in nanosecond resolution, even thinking about pico - this poses some limitations on the list of possible candidates if I unserstand correctly?
I would be very greatfull if anyone would be able to understand my question and to shed some light on the topic for me :-)
Many Thanks and kind regards,
Beppo
I don't think anyone can say "yes, framework X can definitely handle your workload", because it depends a lot on what you need out of your message processing, e.g. regarding messaging reliability, and how your data streams can be partitioned.
You may be interested in BenchmarkingDistributedStreamProcessingEngines. The paper is using versions of Storm/Flink/Spark that are a few years old (looks like they were released in 2016), but maybe the authors would be willing to let you use their benchmark to evaluate newer versions of the three frameworks?
A very common setup for streaming analytics is to go data source -> Kafka/Pulsar -> analytics framework -> long term data store. This decouples processing from data ingest, and lets you do stuff like reprocessing historical data as if it were new.
I think the first step for you should be to see if you can get the data volume you need through Kafka/Pulsar. Either generate a test set manually, or grab some data you think could be representative from your production environment, and see if you can put it through Kafka/Pulsar at the throughput/latency you need.
Remember to consider partitioning of your data. If some of your data streams could be processed independently (i.e. ordering doesn't matter), you should not be putting them in the same partitions. For example, there is probably no reason to mix sensor measurements and the video feed streams. If you can separate your data into independent streams, you are less likely to run into bottlenecks both in Kafka/Pulsar and the analytics framework. Separate data streams would also allow you to parallelize processing in the analytics framework much better, as you could run e.g. video feed and sensor processing on different machines.
Once you know whether you can get enough throughput through Kafka/Pulsar, you should write a small example for each of the 3 frameworks. To start, I would just receive and drop the data from Kafka/Pulsar, which should let you know early whether there's a bottleneck in the Kafka/Pulsar -> analytics path. After that, you can extend the example to do something interesting with the example data, e.g. do a bit of processing like what you might want to do in production.
You also need to consider which kinds of processing guarantees you need for your data streams. Generally you will pay a performance penalty for guaranteeing at-least-once or exactly-once processing. For some types of data (e.g. the video feed), it might be okay to occasionally lose messages. Once you decide on a needed guarantee, you can configure the analytics frameworks appropriately (e.g. disable acking in Storm), and try benchmarking on your test data.
Just to answer some of your questions more explicitly:
The live data analysis/monitoring use case sounds like it fits the Storm/Flink systems fairly well. Hooking it up to Kafka/Pulsar directly, and then doing whatever analytics you need sounds like it could work for you.
Reprocessing of historical data is going to depend on what kind of queries you need to do. If you simply need a time interval + id, you can likely do that with Kafka plus a filter or appropriate partitioning. Kafka lets you start processing at a specific timestamp, and if you data is partitioned by id or you filter it as the first step in your analytics, you could start at the provided timestamp and stop processing when you hit a message outside the time window. This only applies if the timestamp you're interested in is when the message was added to Kafka though. I also don't believe Kafka supports below-millisecond resolution on the timestamps it generates.
If you need to do more advanced queries (e.g. you need to look at timestamps generated by your sensors), you could look at using Cassandra or Elasticsearch or Solr as your permanent data store. You will also want to investigate how to get the data from those systems back into your analytics system. For example, I believe Spark ships with a connector for reading from Elasticsearch, while Elasticsearch provides a connector for Storm. You should check whether such a connector exists for your data store/analytics system combination, or be willing to write your own.
Edit: Elaborating to answer your comment.
I was not aware that Kafka or Pulsar supported timestamps specified by the user, but sure enough, they both do. I don't see that Pulsar supports sub-millisecond timestamps though?
The idea you describe can definitely be supported by Kafka.
What you need is the ability to start a Kafka/Pulsar client at a specific timestamp, and read forward. Pulsar doesn't seem to support this yet, but Kafka does.
You need to guarantee that when you write data into a partition, they arrive in order of timestamp. This means that you are not allowed to e.g. write first message 1 with timestamp 10, and then message 2 with timestamp 5.
If you can make sure you write messages in order to Kafka, the example you describe will work. Then you can say "Start at timestamp 'last night at midnight'", and Kafka will start there. As live data comes in, it will receive it and add it to the end of its log. When the consumer/analytics framework has read all the data from last midnight to current time, it will start waiting for new (live) data to arrive, and process it as it comes in. You can then write custom code in your analytics framework to make sure it stops processing when it reaches the first message with timestamp 'tomorrow night'.
With regard to support of sub-millisecond timestamps, I don't think Kafka or Pulsar will support it out of the box, but you can work around it reasonably easily. Just put the sub-millisecond timestamp in the message as a custom field. When you want to start at e.g. timestamp 9ms 10ns, you ask Kafka to start at 9ms, and use a filter in the analytics framework to drop all messages between 9ms and 9ms 10ns.
Allow me to add the following suggestions on how Apache Pulsar might help address some of your requirements. Food for thought as it were.
"data is flowing/streamed into the platform/framework, attached an identifier like a URL or an ID or such"
You might want to look at Pulsar Functions, which allows you to write simple functions (In Java or Python) that gets executed on each individual message that is published to a topic. They are ideal for this type of data augmentation use case.
the platform interacts with integrated or external storage to persist the streaming data (for years), associated with the identifier
Pulsar has recently added tiered-storage, that allows you to retain event streams in S3, Azure Blob Store, or Google Cloud storage. This would allow you to keep the data for years in a cheap and reliable data store
analytics processes can now transparently query/analyse data addressed by an identifier and an arbitrary (open or closed) time window, and the framework suplies data batches/samples for the analysis either from backend storage or coming in live from data acquisition
Apache Pulsar has also added integration with the Presto query engine, which would allow you to query the data over a given time period (including data from tiered-storage) and place it into a topic for processing.
Actually, in our architecture, we use Hazelcast IMDG, in order to share information about user operativities among several server nodes.
Our map has the following structure: [key:String|value: CustomObject].
Now, we want to expand our product functionality and we want to develop a real-time dashboard performing real-time data stream by doing:
Complex Aggregation
Continuous Query
etc.
At the end of the process we want to “send” the result to a Vert.x Eventbus and then to a socket layer (SockJS), in order to show the data in a dashboard.
Our need is to set-up a scalable and fast system, in order to handle a heavy amount of data such as thousands of events per second.
The first image represent our current (old) architecture, the second image represent our “target” architecture.
Old Architecture
Target Architecture
What do you think about target architecture?
Is the role of Hazelcast Jet correct or are there another way to perform these operations (for example only with Hazelcast IMDG)?
Thanks in advance.
Looks like a good fit for Hazelcast Jet. You probably will use Sources.mapJournal() to process entries as they are added to the IMap. You can aggregate into sliding windows easily. Writing a Vert.x Event Bus sink should be straightforward with SinkBuilder. Thousands events/s is a low figure, it depends on how much work will you do with each event.
I'm new to Spark streaming and have following situation:
Multiple (health) devices send their data to my service, every event has at least following data inside (userId, timestamp, pulse, bloodPressure).
In the DB I have per user a threshold for pulse and bloodPressure.
Use Case:
I would like to make a sliding window with Spark streaming which calculates the average per user for pulse and bloodpressure, let's say within 10 min.
After 10 min I would like to check in the DB if the values exceed the threshold per user and execute an action, e.g. call a rest service to send an alarm.
Could somebody tell me if this is generally possible with Spark, and if yes, point me in the right direction?
This is definitely possible. It's not necessarily the best tool to do so though. It depends on the volume of input you expect. If you have hundreds of thousands devices sending one event every second, maybe Spark could be justified. Anyway it's not up to me to validate your architectural choices but keep in mind that resorting to Spark for these use cases make sense only if the volume of data cannot be handled by a single machine.
Also, if the latency of the alert is important and a second or two make a difference, Spark is not the best tool. A processor on a single machine can achieve lower latencies. Otherwise use something more streaming-oriented, like Apache Flink.
As a general advice, if you want to do it in Spark, you just need to create a source (I don't know where your data come from), load the thresholds in a broadcast variable (assuming they are constant over time) and write the logic. To make the rest call, use forEachRdd as the output sink and implement the call logic there.
I have an application that works as follows: Linux machines generate 28 different types of letter to customers. The letters must be sent in .docx (Microsoft Word format). A secretary maintains MS Word templates, which are automatically used as necessary. Changing from using MS Word is not an option.
To coordinate all this, document jobs are placed into a database table and a python program running on each of the windows machines polls the database frequently, locking out jobs and running them as necessary.
We use a central database table for the job information to coordinate different states ("new", "processing", "finished", "printed")... as well to give accurate status information.
Anyway, I don't like the clients polling the database frequently, seeing as they aren't working most of the time. Clients hpoll every 5 seconds.
To avoid polling, I kind of want a broadcast "there's some work to do" or "check your database for some work to do" message sent to all the client machines.
I think some kind of publish/subscribe message queue would be up to the job, but I don't want any massive extra complexity.
Is there a zero or near zero config/maintenance piece of software that would achieve this? What are the options?
X
Is there any objective evidence that any significant load is being put on the server? If it works, I'd make sure there's really a problem to solve here.
It must be nice to have everything running so smoothly that you're looking at things that might only possibly be improved!
Is there a zero or near zero config/maintenance piece of software that would achieve this? What are the options?
Possibly, but what you would save in configuration and implementation time would likely hurt performance more than your polling service ever could. SQL Server isn't made to do a push really (not easily anyway). There are things that you could use to push data out (replication service, log shipping - icky stuff), but they would be more complex and require more resources than your simple polling service. Some options would be:
some kind of trigger which runs your executable using command-line calls (sp_cmdshell)
using a COM object which SQL Server could open and run
using a SQL Agent job to run a VBScript (which would again be considered "polling")
These options are a bit ridiculous considering what you have already done is much simpler.
If you are worried about the polling service using too many cycles or something - you can always throttle it back - polling every minute, every 10 minutes, or even just once a day might be more appropriate - this would be a business decision, so go ask someone in the business how fast it needs to be.
Simple polling services are fairly common, because they are, well... simple. In addition they are also low overhead, remotely stable, and error-tolerant. The down side is that they can hammer the database into dust if not carefully controlled.
A message queue might work well, as they're usually setup to be able to block for a while without wasting resources. But with MySQL, I don't think that's an option.
If you just want to reduce load on the DB, you could create a table with a single row: the latest job ID. Then clients just need to compare that to their last ID to see if they need to run a full poll against the real table. This way the overhead should be greatly reduced, if it's an issue now.
Unlike Postgres and SQL Server (or object stores like CouchDb), MySQL does not emit database events. However there are some coding patterns you can use to simulate this.
If you have one or more tables that you wish to monitor, you can create triggers on these tables that add a row to a "changes" table that records a queue of events to process. Your triggers filter the subset of data changes that you care about and create records in your changes table for each event you wish to perform. Because this pattern queues and persists events it works well even when the workers that process these events have outages.
You might think that MyISAM is the best choice for the changes table since it's mostly performing writes (or even MEMORY if you don't need to persist the events between database server outages). However, keep in mind that both Memory and MEMORY and MyISAM have only full-table locks so your trigger on an InnoDB table might hit a bottle neck when performing an insert into a MEMORY and MyISAM table. You may also require InnoDB for the changes table if you're using a ON DELETE CASCADE with another InnoDB table (requires both tables to use the same engine).
You might also use SHOW TABLE STATUS to check the last update time of you changes table to check if there's something to perform. This feature wont work for InnoDB tables.
These articles describes in more depth some of alternative ways to implement queues in MySQL and even avoid polling!
How to notify event listeners in MySQL
How to implement a queue in SQL
5 subtle ways you're using MySQL as a queue, and why it'll bite you