I'm new to Big Data and Apache Spark (and an undergrad doing work under a supervisor).
Is it possible to apply a function (i.e. a spline) to only partitions of the RDD? I'm trying to implement some of the work in the paper here.
The book "Learning Spark" seems to indicate that this is possible, but doesn't explain how.
"If you instead have many small datasets on which you want to train different learning models, it would be better to use a single- node learning library (e.g., Weka or SciKit-Learn) on each node, perhaps calling it in parallel across nodes using a Spark map()."
Actually, we have a library which does exactly that. We have several sklearn transformators and predictors up and running. It's name is sparkit-learn.
From our examples:
from splearn.rdd import DictRDD
from splearn.feature_extraction.text import SparkHashingVectorizer
from splearn.feature_extraction.text import SparkTfidfTransformer
from splearn.svm import SparkLinearSVC
from splearn.pipeline import SparkPipeline
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
X = [...] # list of texts
y = [...] # list of labels
X_rdd = sc.parallelize(X, 4)
y_rdd = sc.parralelize(y, 4)
Z = DictRDD((X_rdd, y_rdd),
columns=('X', 'y'),
dtype=[np.ndarray, np.ndarray])
local_pipeline = Pipeline((
('vect', HashingVectorizer()),
('tfidf', TfidfTransformer()),
('clf', LinearSVC())
))
dist_pipeline = SparkPipeline((
('vect', SparkHashingVectorizer()),
('tfidf', SparkTfidfTransformer()),
('clf', SparkLinearSVC())
))
local_pipeline.fit(X, y)
dist_pipeline.fit(Z, clf__classes=np.unique(y))
y_pred_local = local_pipeline.predict(X)
y_pred_dist = dist_pipeline.predict(Z[:, 'X'])
You can find it here.
Im not 100% sure that I am following, but there are a number of partition methods, such as mapPartitions. These operators hand you the Iterator on each node, and you can do whatever you want to the data and pass it back through a new Iterator
rdd.mapPartitions(iter=>{
//Spin up something expensive that you only want to do once per node
for(item<-iter) yield {
//do stuff to the items using your expensive item
}
})
If your data set is small (it is possible to load it and train on one worker) you can do something like this:
def trainModel[T](modelId: Int, trainingSet: List[T]) = {
//trains model with modelId and returns it
}
//fake data
val data = List()
val numberOfModels = 100
val broadcastedData = sc.broadcast(data)
val trainedModels = sc.parallelize(Range(0, numberOfModels))
.map(modelId => (modelId, trainModel(modelId, broadcastedData.value)))
I assume you have some list of models (or some how parametrized models) and you can give them ids. Then in function trainModel you pick one depending on id. And as result you will get rdd of pairs of trained models and their ids.
Related
I was attempting to speed up some of my pipelines but couldn't get a precise answer. Are some for loops OK, depending on the implementation? When is it OK to use a loop without taking too much of a performance hit? I've read
This nice article by David Mudrauskas
This nice Stack Overflow answer
The Spark RDD docs, which advises
In general, closures - constructs like loops or locally defined methods, should not be used to mutate some global state. Spark does not define or guarantee the behavior of mutations to objects referenced from outside of closures. Some code that does this may work in local mode, but that’s just by accident and such code will not behave as expected in distributed mode.
If we were to use a for loop to step through and train a series of models, persisting them in the models dict,
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
dv = ['y1','y2','y3', ...]
models = {}
for v in dv:
assembler = VectorAssembler(inputCols=feature_cols, outputCol='features')
model = LogisticRegression(featuresCol='features',labelCol=v,predictionCol=f'prediction_{v}')
pipeline = Pipeline(stages=[assembler,model])
pipe = pipeline.fit(train)
models[v] = pipe
would that be meaningfully slower than enumerating and training them each explicitly like below? are they equivalent?
# y1
assembler = VectorAssembler(inputCols=feature_cols, outputCol='features')
model = LogisticRegression(featuresCol='features',labelCol='y1',predictionCol=f'prediction_y1')
pipeline = Pipeline(stages=[assembler,model])
pipe = pipeline.fit(train)
models[v] = pipe
#y2
assembler = VectorAssembler(inputCols=feature_cols, outputCol='features')
model = LogisticRegression(featuresCol='features',labelCol='y2',predictionCol=f'prediction_y2')
pipeline = Pipeline(stages=[assembler,model])
pipe = pipeline.fit(train)
models[v] = pipe
#y3
assembler = VectorAssembler(inputCols=feature_cols, outputCol='features')
model = LogisticRegression(featuresCol='features',labelCol='y3',predictionCol=f'prediction_y3')
pipeline = Pipeline(stages=[assembler,model])
pipe = pipeline.fit(train)
models[v] = pipe
...
my understanding is that the SparkML library has parallelism built in, but I'm wondering if using the loop degrades this parallelism, and if there is a better way to train models in parallel. It's very slow on my setup, so maybe I'm doing something wrong... Thanks in advance!
Both approaches are the same. Irrespective of the approach, the parallelism depends on the number of cores you have across your Executors. You can read more in this article: https://www.javacodegeeks.com/2018/10/anatomy-apache-spark-job.html
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.Row
// Load training data
val data = MLUtils.loadLibSVMFile(sc,"/home/.../neural.txt").toDF()
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
val train = splits(0)
val test = splits(1)
val layers = Array[Int](4, 5, 4, 4)
val trainer = new MultilayerPerceptronClassifier().setLayers(layers).setBlockSize(128).setSeed(1234L).setMaxIter(100)
val model = trainer.fit(train)
// compute precision on the test set
val result = model.transform(test)
val predictionAndLabels = result.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator().setMetricName("precision")
println("Precision:" + evaluator.evaluate(predictionAndLabels))
I am using MultilayerPerceptronClassifier to build neural network in Spark. I am getting 62.5% of accuracy. What all parameters I should change to get good accuracy?
As some people has said , the question is too broad and cant be answered without more detail but some advice(independently of the models/altorithms used or the tools and libraries for implementing them) would be:
Use a cross validation set and perform some cross validation with different network architectures.
Plot "Learning curves"
Identify if you are having high bias or high variance
See if you can or need to apply feature scaling and/or normalization.
Do some "Error Analysis"(manually verify which examples failed and evaluate or categorize them to see if you can find a pattern)
Not neccesarily in that order, but that could help you identify if you have underfitting, overfitting, if you need more training data, add or remove features, add regularization, etc. In summary , perform machine learning debugging.
Hope that helps, you can find more deep details about this in Andrew Ngs series of videos, starting with this:
https://www.youtube.com/watch?v=qIfLZAa32H0
Supossed I have a Pipeline like this:
val tokenizer = new Tokenizer().setInputCol("tweet").setOutputCol("words")
val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol("words").setOutputCol("features")
val idf = new IDF().setInputCol("features").setOutputCol("idffeatures")
val nb = new org.apache.spark.ml.classification.NaiveBayes()
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, idf, nb))
val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures, Array(10, 100, 1000)).addGrid(nb.smoothing, Array(0.01, 0.1, 1)).build()
val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator()).setEstimatorParamMaps(paramGrid).setNumFolds(10)
val cvModel = cv.fit(df)
As you can see I defined a CrossValidator using a MultiClassClassificationEvaluator. I have seen a lot of examples getting metrics like Precision/Recall during testing process but these metris are gotten when you use a different set of data for testing purposes (See for example this documentation).
From my understanding, CrossValidator is going to create folds and one fold will be use for testing purposes, then CrossValidator will choose the best model. My question is, is possible to get Precision/Recall metrics during training process?
Well, the only metric which is actually stored is the one you define when you create an instance of an Evaluator. For the BinaryClassificationEvaluator this can take one of the two values:
areaUnderROC
areaUnderPR
with the former one being default, and can be set using setMetricName method.
These values are collected during training process and can accessed using CrossValidatorModel.avgMetrics. Order of values corresponds to the order of EstimatorParamMaps (CrossValidatorModel.getEstimatorParamMaps).
I'm trying to understand how spark.ml handles string categorical independent variables. I know that in Spark I have to convert strings to doubles using StringIndexer.
Eg., "a"/"b"/"c" => 0.0/1.0/2.0.
But what I really would like to avoid is then having to use OneHotEncoder on that column of doubles. This seems to make the pipeline unnecessarily messy. Especially since Spark knows that the data is categorical. Hopefully the sample code below makes my question clearer.
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.classification.LogisticRegression
val df = sqlContext.createDataFrame(Seq(
Tuple2(0.0,"a"), Tuple2(1.0, "b"), Tuple2(1.0, "c"), Tuple2(0.0, "c")
)).toDF("y", "x")
// index the string column "x"
val indexer = new StringIndexer().setInputCol("x").setOutputCol("xIdx").fit(df)
val indexed = indexer.transform(df)
// build a data frame of label, vectors
val assembler = (new VectorAssembler()).setInputCols(List("xIdx").toArray).setOutputCol("features")
val assembled = assembler.transform(indexed)
// build a logistic regression model and fit it
val logreg = (new LogisticRegression()).setFeaturesCol("features").setLabelCol("y")
val model = logreg.fit(assembled)
The logistic regression sees this as a model with only one independent variable.
model.coefficients
res1: org.apache.spark.mllib.linalg.Vector = [0.7667490491775728]
But the independent variable is categorical with three categories = ["a", "b", "c"]. I know I never did a one of k encoding but the metadata of the data frame knows that the feature vector is nominal.
import org.apache.spark.ml.attribute.AttributeGroup
AttributeGroup.fromStructField(assembled.schema("features"))
res2: org.apache.spark.ml.attribute.AttributeGroup = {"ml_attr":{"attrs":
{"nominal":[{"vals":["c","a","b"],"idx":0,"name":"xIdx"}]},
"num_attrs":1}}
How do I pass this information to LogisticRegression? Is this not the whole point of keeping dataframe metadata? There does not seem to be a CategoricalFeaturesInfo in SparkML. Do I really need to do a 1 of k encoding for each categorical feature?
Maybe I am missing something, but this really looks like the job for RFormula (https://spark.apache.org/docs/latest/ml-features.html#rformula).
As the name suggests, it takes an "R-style" formula that describes how the feature vector is composed from the input data columns.
For each categorical input columns (that is, StringType as type) it adds a StringIndexer + OneHotEncoder to the final pipeline implementing the formula under the hoods.
The output is a feature vector (of doubles) that can be used with any algorithm in the org.apache.spark.ml package, as the one you are targeting.
I want to tunning my model with grid search and cross validation with spark. In the spark, it must put the base model in a pipeline, the office demo of pipeline use the LogistictRegression as an base model, which can be new as an object. However, the RandomForest model cannot be new by client code, so it seems not be able to use RandomForest in the pipeline api. I don't want to recreate an wheel, so can anybody give some advice?
Thanks
However, the RandomForest model cannot be new by client code, so it seems not be able to use RandomForest in the pipeline api.
Well, that is true but you simply trying to use a wrong class. Instead of mllib.tree.RandomForest you should use ml.classification.RandomForestClassifier. Here is an example based on the one from MLlib docs.
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.util.MLUtils
import sqlContext.implicits._
case class Record(category: String, features: Vector)
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainData, testData) = (splits(0), splits(1))
val trainDF = trainData.map(lp => Record(lp.label.toString, lp.features)).toDF
val testDF = testData.map(lp => Record(lp.label.toString, lp.features)).toDF
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("label")
val rf = new RandomForestClassifier()
.setNumTrees(3)
.setFeatureSubsetStrategy("auto")
.setImpurity("gini")
.setMaxDepth(4)
.setMaxBins(32)
val pipeline = new Pipeline()
.setStages(Array(indexer, rf))
val model = pipeline.fit(trainDF)
model.transform(testDF)
There is one thing I couldn't figure out here. As far as I can tell it should be possible to use labels extracted from LabeledPoints directly, but for some reason it doesn't work and pipeline.fit raises IllegalArgumentExcetion:
RandomForestClassifier was given input with invalid label column label, without the number of classes specified.
Hence the ugly trick with StringIndexer. After applying we get required attributes ({"vals":["1.0","0.0"],"type":"nominal","name":"label"}) but some classes in ml seem to work just fine without it.