Is spark or spark with mesos the easiest to start with? - apache-spark

If I want a simple setup that would give me a quick start: would a combination of apache-spark and mesos would be the easiest? or maybe apache-spark alone would be better because....i.e. mesos would add complexity to the process given what it does, or maybe mesos does way so many things that would be hard to deal with spark alone, etc...
All I want is to be able to submit jobs and manage the cluster and jobs easily, nothing fancy for now, is spark or spark/mesos better or something else...

The easiest way to start using Spark is starting stand alone spark cluster on EC2.
It is as easy as running single script - spark-ec2 and it will do the rest for you.
The only case when stand alone cluster may not suit you - if you want to run more then single spark job at a time (at least it was the case with Spark 1.1).
For me personally the stand alone Spark cluster was good enough for a long time when I was running ad-hoc jobs - analyzing company's logs on S3 and learning Spark, and then destroy the cluster.
If you want to run more than one Spark at a time - I would go with Mesos.
Alternative would be to install CDH from Cloudera which is relatively easy (they provide install scripts and install instructions) and it is available for free.
CDH would provide you powerful tools to manage the cluster.
Using CDH for running Spark - they use YARN, and we have one or another issue from time to time with running Spark on YARN.
The main disadvantage to me - CDHs provider its own build of Spark - so it usually one minor version behind, which is a lot for such rapid progressing project as Spark.
So I would try Mesos for running Spark if I need to run more then one job at a time.

Just for completeness, Hortonworks provides downloadable HDP sandbox VM as well as supports Spark on HDP. It is also a good starting point.
Additionally, you can spin off your own cluster. I do thisonmy laptop, not for real big data usecases but for learning with moderate amount of data.
import subprocess as s
from time import sleep
cmd = "D:\\spark\\spark-1.3.1-bin-hadoop2.6\\spark-1.3.1-bin-hadoop2.6\\spark-1.3.1-bin-hadoop2.6\\bin\\spark-class.cmd"
master = "org.apache.spark.deploy.master.Master"
worker = "org.apache.spark.deploy.worker.Worker"
masterUrl="spark://BigData:7077"
cmds={"masters":1,"workers":3}
masterProcess=[cmd,master]
workerProcess=[cmd,worker,masterUrl]
noWorker = 3
pMaster = s.Popen(masterProcess)
sleep(3)
pWorkers = []
for i in range(noWorker):
pw = s.Popen(workerProcess)
pWorkers.append(pw)
The code above starts master and 3 workers, which I can monitor using the UI. This is just to get going and if you need aquick local set up.

Related

Does Spark streaming needs HDFS with Kafka

I have to design a setup to read incoming data from twitter (streaming). I have decided to use Apache Kafka with Spark streaming for real time processing. It is required to show analytics in a dashboard.
Now, being a newbie is this domain, My assumed data rate will be 10 Mb/sec maximum. I have decided to use 1 machine for Kafka of 12 cores and 16 GB memory. *Zookeeper will also be on same machine. Now, I am confused about Spark, it will have to perform streaming job analysis only. Later, analyzed data output is pushed to DB and dashboard.
Confused list:
Should I run Spark on Hadoop cluster or local file system ?
Is standalone mode of Spark can fulfill my requirements ?
Is my approach is appropriate or what should be best in this case ?
Try answer:
Should I run Spark on Hadoop cluster or local file system ?
recommend use hdfs,it can can save more data, ensure High availability.
Is standalone mode of Spark can fulfill my requirements ?
Standalone mode is the easiest to set up and will provide almost all the same features as the other cluster managers if you are only running Spark.
YARN allows you to dynamically share and centrally configure the same pool of cluster resources between all frameworks that run on YARN.
YARN doesn’t need to run a separate ZooKeeper Failover Controller.
YARN will likely be preinstalled in many Hadoop distributions.such as CDH HADOOP.
so recommend use
YARN doesn’t need to run a separate ZooKeeper Failover Controller.
so recommend yarn
Useful links:
spark yarn doc
spark standalone doc
other wonderful answer
Is my approach is appropriate or what should be best in this case ?
If you data not more than 10 million ,I think can use use local cluster to do it.
local mode avoid many nodes shuffle. shuffles between processes are faster than shuffles between nodes.
else recommend use greater than or equal 3 nodes,That is real Hadoop cluster.
As a spark elementary players,this is my understand. I hope ace corrects me.

Is it possible to run ANY application or program with HADOOP YARN?

I'm studying distributed computing recently and found out Hadoop Yarn is one of them.
So thought if I just establish Hadoop Yarn cluster, then every application will run distributed.
But now someone told me that HADOOP Yarn cannot do anything by itself and need other things like mapreduce, spark, and hbase.
If this is correct, then is that mean only limited tasks can be run with Yarn?
Or can I apply Yarn's distributed computing to all applications I want?
Hadoop is the name which refers to the entire system.
HDFS is the actual storage system. Think of it as S3 or a distributed Linux filesystem.
YARN is a framework for scheduling jobs and allocating resources. It handles these things for you, but you don't interact very much with it.
Spark and MapReduce are managed by Yarn. With these two, you can actually write your code/applications and give work to the cluster.
HBase uses the HDFS storage (with is file based) and provides NoSql storage.
Theoretically you can run more than just Spark and MapReduce on Yarn and you can use something else then Yarn (Kubernetes is in works or supported now). You can even write your own processing tool, queue/resource management system, storage... Hadoop has many pieces which you may use or not, depending on your case. But the majority of Hadoop systems use Yarn and Spark.
If you want to deploy Docker containers for example, just a Kubernetes cluster would be a better choice. If you need batch/real time processing with Spark, use Hadoop.
YARN itself is a resource manager. You will need to write code that can be deployed onto those resources, and then that could do anything, given that the nodes running the tasks are themselves capable of running the job. For example, you cannot distribute a Python library without first installing the dependencies for that script. Mesos is a bit more generalized / accessible than YARN, if you want more flexibility for the same affect.
YARN mostly supports running JAR files, shell scripts (at least, from Oozie) or Docker containers can be deployed to it as well (refer Apache docs)
You may also refer to the Apache Slider or Twill projects for more information.

Is it worth deploying Spark on YARN if I have no other cluster software?

I have a Spark cluster running in standalone mode. I am currently executing code on using Jupyter notebook calling pyspark. Is there a benefit to using YARN as the cluster manager, assuming that the machines are not doing anything else?
Would I get better performance using YARN? If so, why?
Many thanks,
John
I'd say YES by considering these points.
Why Run on YARN?
Using YARN as Spark’s cluster manager confers a few benefits over Spark standalone:
You can take advantage of all the features of YARN schedulers for categorizing, isolating, and prioritizing workloads.
Any how Spark standalone mode also requires worker for slave activity which can not run non Spark applications, where as with YARN, this is isolated in containers, so adoption of another compute framework should be a code change instead of infra + code. So the cluster can be shared among different frameworks.
YARN is the only cluster manager for Spark that supports security. With
YARN, Spark can run against Kerberized Hadoop clusters and uses
secure authentication between its processes.
YARN allows you to dynamically share and centrally configure the same
pool of cluster resources between all frameworks that run on YARN.
You can throw your entire cluster at a MapReduce job, then use some
of it on an Impala query and the rest on Spark application, without
any changes in configuration.
I would say 1,2 and 3 are suitable for mentioned scenarios but not point 4 as we assumed no other frameworks are going to use the cluster.
souce

Apache Spark application deployment best practices

I have a couple of use cases for Apache Spark applications/scripts, generally of the following form:
General ETL use case -
more specifically a transformation of a Cassandra column family containing many events (think event sourcing) into various aggregated column families.
Streaming use case -
realtime analysis of the events as they arrive in the system.
For (1), I'll need to kick off the Spark application periodically.
For (2), just kick off the long running Spark Streaming process at boot time and let it go.
(Note - I'm using Spark Standalone as the cluster manager, so no yarn or mesos)
I'm trying to figure out the most common / best practice deployment strategies for Spark applications.
So far the options I can see are:
Deploying my program as a jar, and running the various tasks with spark-submit - which seems to be the way recommended in the spark docs. Some thoughts about this strategy:
how do you start/stop tasks - just using simple bash scripts?
how is scheduling managed? - simply use cron?
any resilience? (e.g. Who schedules the jobs to run if the driver server dies?)
Creating a separate webapp as the driver program.
creates a spark context programmatically to talk to the spark cluster
allowing users to kick off tasks through the http interface
using Quartz (for example) to manage scheduling
could use cluster with zookeeper election for resilience
Spark job server (https://github.com/ooyala/spark-jobserver)
I don't think there's much benefit over (2) for me, as I don't (yet) have many teams and projects talking to Spark, and would still need some app to talk to job server anyway
no scheduling built in as far as I can see
I'd like to understand the general consensus w.r.t a simple but robust deployment strategy - I haven't been able to determine one by trawling the web, as of yet.
Thanks very much!
Even though you are not using Mesos for Spark, you could have a look at
-Chronos offering a distributed and fault tolerant cron
-Marathon a Mesos framework for long running applications
Note that this doesn't mean you have to move your spark deployment to mesos, e.g. you could just use chronos to trigger the spark -submit.
I hope I understood your problem correctly and this helps you a bit!

Which cluster type should I choose for Spark?

I am new to Apache Spark, and I just learned that Spark supports three types of cluster:
Standalone - meaning Spark will manage its own cluster
YARN - using Hadoop's YARN resource manager
Mesos - Apache's dedicated resource manager project
I think I should try Standalone first. In the future, I need to build a large cluster (hundreds of instances).
Which cluster type should I choose?
Spark Standalone Manager : A simple cluster manager included with Spark that makes it easy to set up a cluster. By default, each application uses all the available nodes in the cluster.
A few benefits of YARN over Standalone & Mesos:
YARN allows you to dynamically share and centrally configure the same pool of cluster resources between all frameworks that run on YARN.
You can take advantage of all the features of YARN schedulers for categorizing, isolating, and prioritizing workloads.
The Spark standalone mode requires each application to run an executor on every node in the cluster; whereas with YARN, you choose the number of executors to use
YARN directly handles rack and machine locality in your requests, which is convenient.
The resource request model is, oddly, backwards in Mesos. In YARN, you (the framework) request containers with a given specification and give locality preferences. In Mesos you get resource "offers" and choose to accept or reject those based on your own scheduling policy. The Mesos model is a arguably more flexible, but seemingly more work for the person implementing the framework.
If you have a big Hadoop cluster already in place, YARN is better choice.
The Standalone manager requires the user configure each of the nodes with the shared secret. Mesos’ default authentication module, Cyrus SASL, can be replaced with a custom module. YARN has security for authentication, service level authorization, authentication for Web consoles and data confidentiality. Hadoop authentication uses Kerberos to verify that each user and service is authenticated by Kerberos.
High availability is offered by all three cluster managers but Hadoop YARN doesn’t need to run a separate ZooKeeper Failover Controller.
Useful links:
spark documentation page
agildata article
I think the best to answer that are those who work on Spark. So, from Learning Spark
Start with a standalone cluster if this is a new deployment.
Standalone mode is the easiest to set up and will provide almost all
the same features as the other cluster managers if you are only
running Spark.
If you would like to run Spark alongside other applications, or to use
richer resource scheduling capabilities (e.g. queues), both YARN and
Mesos provide these features. Of these, YARN will likely be
preinstalled in many Hadoop distributions.
One advantage of Mesos over both YARN and standalone mode is its
fine-grained sharing option, which lets interactive applications such
as the Spark shell scale down their CPU allocation between commands.
This makes it attractive in environments where multiple users are
running interactive shells.
In all cases, it is best to run Spark on the same nodes as HDFS for
fast access to storage. You can install Mesos or the standalone
cluster manager on the same nodes manually, or most Hadoop
distributions already install YARN and HDFS together.
Standalone is pretty clear as other mentioned it should be used only when you have spark only workload.
Between yarn and mesos, One thing to consider is the fact that unlike mapreduce, spark job grabs executors and hold it for entire lifetime of a job. where in mapreduce a job can get and release mappers and reducers over lifetime.
if you have long running spark jobs which during the lifetime of a job doesn't fully utilize all the resources it got in beginning, you may want to share those resources to other app and that you can only do either via Mesos or Spark dynamic scheduling. https://spark.apache.org/docs/2.0.2/job-scheduling.html#scheduling-across-applications
So with yarn, only way have dynamic allocation for spark is by using spark provided dynamic allocation. Yarn won't interfere in that while Mesos will. Again this whole point is only important if you have a long running spark application and you would like to scale it up and down dynamically.
In this case and similar dilemmas in data engineering, there are many side questions to be answered before choosing one distribution method over another.
For example, if you are not running your processing engine on more than 3 nodes, you usually are not facing too big of a problem to handle so your margin of performance tuning between YARN and SparkStandalone (based on experience) will not clarify your decision. Because usually you will try to make your pipeline simple, specially when your services are not self-managed by cloud and bugs and failures happen often.
I choose standalone for relatively small or not-complex pipelines but if I'm feeling alright and have a Hadoop cluster already in place, I prefer to take advantage of all the extra configs that Hadoop(Yarn) can give me.
Mesos has more sophisticated scheduling design, allowing applications like Spark to negotiate with it. It's more suitable for the diversity of applications today. I found this site really insightful:
https://www.oreilly.com/ideas/a-tale-of-two-clusters-mesos-and-yarn
"... YARN is optimized for scheduling Hadoop jobs, which are historically (and still typically) batch jobs with long run times. This means that YARN was not designed for long-running services, nor for short-lived interactive queries (like small and fast Spark jobs), and while it’s possible to have it schedule other kinds of workloads, this is not an ideal model. The resource demands, execution model, and architectural demands of MapReduce are very different from those of long-running services, such as web servers or SOA applications, or real-time workloads like those of Spark or Storm..."

Resources