Calculating duration by subtracting two datetime columns in string format - apache-spark

I have a Spark Dataframe in that consists of a series of dates:
from pyspark.sql import SQLContext
from pyspark.sql import Row
from pyspark.sql.types import *
sqlContext = SQLContext(sc)
import pandas as pd
rdd = sc.parallelizesc.parallelize([('X01','2014-02-13T12:36:14.899','2014-02-13T12:31:56.876','sip:4534454450'),
('X02','2014-02-13T12:35:37.405','2014-02-13T12:32:13.321','sip:6413445440'),
('X03','2014-02-13T12:36:03.825','2014-02-13T12:32:15.229','sip:4534437492'),
('XO4','2014-02-13T12:37:05.460','2014-02-13T12:32:36.881','sip:6474454453'),
('XO5','2014-02-13T12:36:52.721','2014-02-13T12:33:30.323','sip:8874458555')])
schema = StructType([StructField('ID', StringType(), True),
StructField('EndDateTime', StringType(), True),
StructField('StartDateTime', StringType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
What I want to do is find duration by subtracting EndDateTime and StartDateTime. I figured I'd try and do this using a function:
# Function to calculate time delta
def time_delta(y,x):
end = pd.to_datetime(y)
start = pd.to_datetime(x)
delta = (end-start)
return delta
# create new RDD and add new column 'Duration' by applying time_delta function
df2 = df.withColumn('Duration', time_delta(df.EndDateTime, df.StartDateTime))
However this just gives me:
>>> df2.show()
ID EndDateTime StartDateTime ANI Duration
X01 2014-02-13T12:36:... 2014-02-13T12:31:... sip:4534454450 null
X02 2014-02-13T12:35:... 2014-02-13T12:32:... sip:6413445440 null
X03 2014-02-13T12:36:... 2014-02-13T12:32:... sip:4534437492 null
XO4 2014-02-13T12:37:... 2014-02-13T12:32:... sip:6474454453 null
XO5 2014-02-13T12:36:... 2014-02-13T12:33:... sip:8874458555 null
I'm not sure if my approach is correct or not. If not, I'd gladly accept another suggested way to achieve this.

As of Spark 1.5 you can use unix_timestamp:
from pyspark.sql import functions as F
timeFmt = "yyyy-MM-dd'T'HH:mm:ss.SSS"
timeDiff = (F.unix_timestamp('EndDateTime', format=timeFmt)
- F.unix_timestamp('StartDateTime', format=timeFmt))
df = df.withColumn("Duration", timeDiff)
Note the Java style time format.
>>> df.show()
+---+--------------------+--------------------+--------+
| ID| EndDateTime| StartDateTime|Duration|
+---+--------------------+--------------------+--------+
|X01|2014-02-13T12:36:...|2014-02-13T12:31:...| 258|
|X02|2014-02-13T12:35:...|2014-02-13T12:32:...| 204|
|X03|2014-02-13T12:36:...|2014-02-13T12:32:...| 228|
|XO4|2014-02-13T12:37:...|2014-02-13T12:32:...| 269|
|XO5|2014-02-13T12:36:...|2014-02-13T12:33:...| 202|
+---+--------------------+--------------------+--------+

Thanks to David Griffin. Here's how to do this for future reference.
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
from pyspark.sql.types import StringType, IntegerType, StructType, StructField
from pyspark.sql.functions import udf
# Build sample data
rdd = sc.parallelize([('X01','2014-02-13T12:36:14.899','2014-02-13T12:31:56.876'),
('X02','2014-02-13T12:35:37.405','2014-02-13T12:32:13.321'),
('X03','2014-02-13T12:36:03.825','2014-02-13T12:32:15.229'),
('XO4','2014-02-13T12:37:05.460','2014-02-13T12:32:36.881'),
('XO5','2014-02-13T12:36:52.721','2014-02-13T12:33:30.323')])
schema = StructType([StructField('ID', StringType(), True),
StructField('EndDateTime', StringType(), True),
StructField('StartDateTime', StringType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
# define timedelta function (obtain duration in seconds)
def time_delta(y,x):
from datetime import datetime
end = datetime.strptime(y, '%Y-%m-%dT%H:%M:%S.%f')
start = datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%f')
delta = (end-start).total_seconds()
return delta
# register as a UDF
f = udf(time_delta, IntegerType())
# Apply function
df2 = df.withColumn('Duration', f(df.EndDateTime, df.StartDateTime))
Applying time_delta() will give you duration in seconds:
>>> df2.show()
ID EndDateTime StartDateTime Duration
X01 2014-02-13T12:36:... 2014-02-13T12:31:... 258
X02 2014-02-13T12:35:... 2014-02-13T12:32:... 204
X03 2014-02-13T12:36:... 2014-02-13T12:32:... 228
XO4 2014-02-13T12:37:... 2014-02-13T12:32:... 268
XO5 2014-02-13T12:36:... 2014-02-13T12:33:... 202

datediff(Column end, Column start)
Returns the number of days from start to end.
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/sql/functions.html

This can be done in spark-sql by converting the string date to timestamp and then getting the difference.
1: Convert to timestamp:
CAST(UNIX_TIMESTAMP(MY_COL_NAME,'dd-MMM-yy') as TIMESTAMP)
2: Get the difference between dates using datediff function.
This will be combined in a nested function like:
spark.sql("select COL_1, COL_2, datediff( CAST( UNIX_TIMESTAMP( COL_1,'dd-MMM-yy') as TIMESTAMP), CAST( UNIX_TIMESTAMP( COL_2,'dd-MMM-yy') as TIMESTAMP) ) as LAG_in_days from MyTable")
Below is the result:
+---------+---------+-----------+
| COL_1| COL_2|LAG_in_days|
+---------+---------+-----------+
|24-JAN-17|16-JAN-17| 8|
|19-JAN-05|18-JAN-05| 1|
|23-MAY-06|23-MAY-06| 0|
|18-AUG-06|17-AUG-06| 1|
+---------+---------+-----------+
Reference: https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/2458071/Date+Functions+and+Properties+Spark+SQL

Use DoubleType instead of IntegerType
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
from pyspark.sql.types import StringType, IntegerType, StructType, StructField
from pyspark.sql.functions import udf
# Build sample data
rdd = sc.parallelize([('X01','2014-02-13T12:36:14.899','2014-02-13T12:31:56.876'),
('X02','2014-02-13T12:35:37.405','2014-02-13T12:32:13.321'),
('X03','2014-02-13T12:36:03.825','2014-02-13T12:32:15.229'),
('XO4','2014-02-13T12:37:05.460','2014-02-13T12:32:36.881'),
('XO5','2014-02-13T12:36:52.721','2014-02-13T12:33:30.323')])
schema = StructType([StructField('ID', StringType(), True),
StructField('EndDateTime', StringType(), True),
StructField('StartDateTime', StringType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
# define timedelta function (obtain duration in seconds)
def time_delta(y,x):
from datetime import datetime
end = datetime.strptime(y, '%Y-%m-%dT%H:%M:%S.%f')
start = datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%f')
delta = (end-start).total_seconds()
return delta
# register as a UDF
f = udf(time_delta, DoubleType())
# Apply function
df2 = df.withColumn('Duration', f(df.EndDateTime, df.StartDateTime))

Here is a working version for spark 2.x derived from jason's answer
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession,SQLContext
from pyspark.sql.types import StringType, StructType, StructField
sc = SparkContext()
sqlContext = SQLContext(sc)
spark = SparkSession.builder.appName("Python Spark SQL basic example").getOrCreate()
rdd = sc.parallelize([('X01','2014-02-13T12:36:14.899','2014-02-13T12:31:56.876'),
('X02','2014-02-13T12:35:37.405','2014-02-13T12:32:13.321'),
('X03','2014-02-13T12:36:03.825','2014-02-13T12:32:15.229'),
('XO4','2014-02-13T12:37:05.460','2014-02-13T12:32:36.881'),
('XO5','2014-02-13T12:36:52.721','2014-02-13T12:33:30.323')])
schema = StructType([StructField('ID', StringType(), True),
StructField('EndDateTime', StringType(), True),
StructField('StartDateTime', StringType(), True)])
df = sqlContext.createDataFrame(rdd, schema)
# register as a UDF
from datetime import datetime
sqlContext.registerFunction("time_delta", lambda y,x:(datetime.strptime(y, '%Y-%m-%dT%H:%M:%S.%f')-datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%f')).total_seconds())
df.createOrReplaceTempView("Test_table")
spark.sql("SELECT ID,EndDateTime,StartDateTime,time_delta(EndDateTime,StartDateTime) as time_delta FROM Test_table").show()
sc.stop()

Related

Create dataframe with timestamp field

On Databricks, the following code snippet
%python
from pyspark.sql.types import StructType, StructField, TimestampType
from pyspark.sql import functions as F
data = [F.current_timestamp()]
schema = StructType([StructField("current_timestamp", TimestampType(), True)])
df = spark.createDataFrame(data, schema)
display(df)
displays a table with value "null". I would expect to see the current timestamp there. Why is this not the case?
createDataFrame does not accept PySpark expressions.
You could pass python's datetime.datetime.now():
import datetime
df = spark.createDataFrame([(datetime.datetime.now(),)], ['ts'])
Defining schema beforehand:
from pyspark.sql.types import *
import datetime
data = [(datetime.datetime.now(),)]
schema = StructType([StructField("current_timestamp", TimestampType(), True)])
df = spark.createDataFrame(data, schema)
OR add timestamp column afterwards:
from pyspark.sql import functions as F
df = spark.range(3)
df1 = df.select(
F.current_timestamp().alias('ts')
)
df2 = df.withColumn('ts', F.current_timestamp())

Pyspark Streaming with checkpointing is failing

I am working on spark streaming data received through custom receiver using pyspark. To make it fault tolerant I enabled checkpointing . Since then the code which was running fine before checkpointing was introduced is now throwing error.
Error Message :
pubsubStream.flatMap(lambda x : x).map(lambda x: convertjson(x)).foreachRDD(lambda rdd : dstream_to_rdd(rdd))
File "/home/test/spark_checkpointing/spark_checkpoint_test.py", line 227, in dstream_to_rdd
df = spark_session.read.option("multiline","true")\
NameError: name 'sparkContext' is not defined
Code is as below :
import sys
from pyspark import SparkContext,SparkConf
from pyspark.streaming import StreamingContext
from pyspark.sql import SparkSession
from pubsub import PubsubUtils
import json
import time
from pyspark.sql.types import (StructField, StringType, StructType, IntegerType, FloatType,LongType,BooleanType)
from google.cloud import storage
import pyspark
conf_bucket_name = <bucket_name>
#Events list
events_list = ["Event1","Event2"]
# This chunk of schema creation will be automated later
# and most probable moved outside
full_schema = StructType([
StructField('_id', StructType([
StructField('_data', StringType(), True)
])),
StructField('ct', StructType([
StructField('$timestamp' , StructType([
StructField('i', LongType(), True),
StructField('t', LongType(), True),
]))])),
StructField('fg', StructType([
StructField('sgs' , StructType([
StructField('col1',StringType(), True),
StructField('col2',StringType(), True)
]))])),
StructField('col6', StringType(), True),
StructField('_corrupt_record', StringType(), True)
])
def convertjson(ele):
temp = json.loads(ele.decode('utf-8'))
if temp['col6'] == 'update':
del temp['updateDescription']
return temp
return temp
def dstream_to_rdd(x):
if not x.isEmpty():
df = spark_session.read.option("multiline","true")\
.option("mode", "PERMISSIVE")\
.option("primitivesAsString", "false")\
.schema(full_schema)\
.option("columnNameOfCorruptRecord", "_corrupt_record")\
.option("allowFieldAddition","true")\
.json(x)
df.show(truncate=True)
#df.printSchema()
def createContext(all_config):
# If you do not see this printed, that means the StreamingContext has been loaded
# from the new checkpoint
print("Creating new context")
ssc = StreamingContext(spark_session.sparkContext, 10)
pubsubStream = PubsubUtils.createStream(ssc, <SUBSCRIPTION>, 10000, True)
# Print the records of dstream
pubsubStream.pprint() /// Dstreams are getting printed on console
#Dstream is transforme using flatmap to flatten it as tuple may have multiple records
#Then converted it to json forma and finally pushed to BQ
pubsubStream.flatMap(lambda x : x).map(lambda x: convertjson(x)).foreachRDD(lambda rdd : dstream_to_rdd(rdd))
pubsubStream.checkpoint(50)
return ssc
if __name__ == "__main__":
#Declaration of spark session and streaming session
checkpointDir = <checkpointdir path on google cloud storage>
spark_session = SparkSession.builder.appName("Test_spark_checkpoint").getOrCreate()
spark_session.conf.set('temporaryGcsBucket', <temp bucket name>)
ssc = StreamingContext.getOrCreate(checkpointDir,lambda: createContext(all_config))
ssc.start()
ssc.awaitTermination()
The error message is of sparkContext not defined. On doing dir(spark_session) this I found
that it returns list of the attributes and methods which contains sparkContext . Am I suppose to pass it explicitly. What is the miss here?
Also help me understanding the position of checkpointing used in code is correct or not.
Update piece of code : Tried with sparkContext instead of sparkSession
conf = SparkConf()
conf.setAppName("Test_spark_checkpoint")
conf.set('temporaryGcsBucket', <temp bucket>)
sc = SparkContext(conf=conf)
print(dir(sc))
ssc = StreamingContext.getOrCreate(checkpointDir,lambda: createContext(all_config))
df = sc.read.option("multiline","true")\
.option("mode", "PERMISSIVE")\
.option("primitivesAsString", "false")\
.schema(full_schema)\
.option("columnNameOfCorruptRecord", "_corrupt_record")\
.option("allowFieldAddition","true")\
.json(x)
df.show(truncate=True)

Transform a column in a sparksql dataframe using python

Hi I have a spark sql dataframe with a whole bunch of columns. One of the columns ("date") is a date field. I want to apply the following transformation to every row in that column.
This is what would I do if it were a pandas dataframe. I cant seem to figure out the spark equivalent
df["date"] = df["date"].map(lambda x: x.isoformat() + "Z")
The column has values of the form
2020-12-07 01:01:48
I want the values to be of the form:
2020-12-07T01:01:48Z
Try something like that:
from pyspark.sql.types import StructType, StructField, DateType, StringType, IntegerType
from pyspark.sql.functions import col
from pyspark.sql import functions as F
schema = StructType([
StructField("date",StringType(),True),
StructField("age", StringType(),True)])
df = spark.createDataFrame([(None,22),(None,25)],schema=schema)
Z = F.lit("Z").cast(StringType())
datetime = F.current_date().cast(StringType())
datetimeZ = F.concat(datetime,Z)
df = df.withColumn("date", datetimeZ)
df.show(5)
+-----------+---+
| date|age|
+-----------+---+
|2021-06-15Z| 22|
|2021-06-15Z| 25|
+-----------+---+

Reading csv files in PySpark

I am trying to read csv file and convert into dataframe.
input.txt
4324,'Andy',43.5,20.3,53.21
2342,'Sam',22.1
3248,'Jane',11.05,12.87
6457,'Bob',32.1,75.23,71.6
Schema: Id, Name,Jan,Feb,March
As you see the csv file doesn't have "," if there are no trailing expenses.
Code:
from pyspark.sql.types import *
input1= sc.textFile('/FileStore/tables/input.txt').map(lambda x: x.split(","))
schema = StructType([StructField('Id',StringType(),True), StructField('Name',StringType(),True), StructField('Jan',StringType(),True), StructField('Feb',StringType(),True), StructField('Mar',StringType(),True)])
df3 = sqlContext.createDataFrame(input1, schema)
I get ValueError: Length of object (4) does not match with length of fields (5). How do I resolve this?
I would first import the file using pandas which should handle everything for you. From there you can then convert the pandas DataFrame to spark and do all your usual stuff. I copied your example txt file and quickly wrote up some code to confirm that it would all work:
import pandas as pd
# Reading in txt file as csv
df_pandas = pd.read_csv('<your location>/test.txt',
sep=",")
# Converting to spark dataframe and displaying
df_spark = spark.createDataFrame(df_pandas)
display(df_pandas)
Which produced the following output:
The faster method would be to import through spark:
# Importing csv file using pyspark
csv_import = sqlContext.read\
.format('csv')\
.options(sep = ',', header='true', inferSchema='true')\
.load('<your location>/test.txt')
display(csv_import)
Which gives the same output.
from pyspark.sql.types import *
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Test").getOrCreate()
fields = [StructField('Id', StringType(), True), StructField('Name', StringType(), True),
StructField('Jan', StringType(), True), StructField('Feb', StringType(), True),
StructField('Mar', StringType(), True)]
schema = StructType(fields)
data = spark.read.format("csv").load("test2.txt")
df3 = spark.createDataFrame(data.rdd, schema)
df3.show()
Output:
+----+------+-----+-----+-----+
| Id| Name| Jan| Feb| Mar|
+----+------+-----+-----+-----+
|4324|'Andy'| 43.5| 20.3|53.21|
|2342| 'Sam'| 22.1| null| null|
|3248|'Jane'|11.05|12.87| null|
|6457| 'Bob'| 32.1|75.23| 71.6|
+----+------+-----+-----+-----+
Here are a couple options for you to consider. These use the wildcard character, so you can loop through all folders and sub-folders, look for files with names that match a specific pattern, and merge everything into a dingle dataframe.
val myDFCsv = spark.read.format("csv")
.option("sep",",")
.option("inferSchema","true")
.option("header","true")
.load("mnt/rawdata/2019/01/01/client/ABC*.gz")
myDFCsv.show()
myDFCsv.head()
myDFCsv.count()
//////////////////////////////////////////
// If you also need to load the filename
import org.apache.spark.sql.functions.input_file_name
val myDFCsv = spark.read.format("csv")
.option("sep",",")
.option("inferSchema","true")
.option("header","true")
.load("mnt/rawdata/2019/01/01/client/ABC*.gz")
.withColumn("file_name",input_file_name())
myDFCsv.show(false)
myDFCsv.head()
myDFCsv.count()

Round Spark DataFrame in-place

I read a .csv file to Spark DataFrame. For a DoubleType column is there a way to specify at the time of the file read that this column should be rounded to 2 decimal places? I'm also supplying a custom schema to the DataFrameReader API call. Here's my schema and API calls:
val customSchema = StructType(Array(StructField("id_1", IntegerType, true),
StructField("id_2", IntegerType, true),
StructField("id_3", DoubleType, true)))
#using Spark's CSV reader with custom schema
#spark == SparkSession()
val parsedSchema = spark.read.format("csv").schema(customSchema).option("header", "true").option("nullvalue", "?").load("C:\\Scala\\SparkAnalytics\\block_1.csv")
After the file read into DataFrame I can round the decimals like:
parsedSchema.withColumn("cmp_fname_c1", round($"cmp_fname_c1", 3))
But this creates a new DataFrame, so I'd also like to know if it can be done in-place instead of creating a new DataFrame.
Thanks
You can specify, say, DecimalType(10, 2) for the DoubleType column in your customSchema when loading your CSV file. Let's say you have a CSV file with the following content:
id_1,id_2,Id_3
1,10,5.555
2,20,6.0
3,30,7.444
Sample code below:
import org.apache.spark.sql.types._
val customSchema = StructType(Array(
StructField("id_1", IntegerType, true),
StructField("id_2", IntegerType, true),
StructField("id_3", DecimalType(10, 2), true)
))
spark.read.format("csv").schema(customSchema).
option("header", "true").option("nullvalue", "?").
load("/path/to/csvfile").
show
// +----+----+----+
// |id_1|id_2|id_3|
// +----+----+----+
// | 1| 10|5.56|
// | 2| 20|6.00|
// | 3| 30|7.44|
// +----+----+----+

Resources