i'm using spark with cassandra and i want to write data into my cassandra table:
CREATE TABLE IF NOT EXISTS MyTable(
user TEXT,
date TIMESTAMP,
event TEXT,
PRIMARY KEY((user ),date , event)
);
But i got this error :
java.io.IOException: Failed to write statements to KeySpace.MyTable.
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:145)
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:120)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:100)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:99)
at com.datastax.spark.connector.cql.CassandraConnector.closeResourceAfterUse(CassandraConnector.scala:151)
at com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:99)
at com.datastax.spark.connector.writer.TableWriter.write(TableWriter.scala:120)
at com.datastax.spark.connector.RDDFunctions$$anonfun$saveToCassandra$1.apply(RDDFunctions.scala:36)
at com.datastax.spark.connector.RDDFunctions$$anonfun$saveToCassandra$1.apply(RDDFunctions.scala:36)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
15/04/28 17:57:47 WARN TaskSetManager: Lost task 13.2 in stage 1.0 (TID 43, dev2-cim.aid.fr): TaskKilled (killed intentionally)
and this warnings in my Cassandra log File :
WARN [SharedPool-Worker-2] 2015-04-28 16:45:21,219 BatchStatement.java:243 - Batch of prepared statements for [*********] is of size 8158, exceeding specified threshold of 5120 by 3038
after making some searchs in the Internet, i've found this link who explain how he fixes the same problem :
http://progexc.blogspot.fr/2015/03/write-batch-size-error-spark-cassandra.html
So, Now i've modified my spark algorithm to add :
conf.set("spark.cassandra.output.batch.grouping.key", "None")
conf.set("spark.cassandra.output.batch.size.rows", "10")
conf.set("spark.cassandra.output.batch.size.bytes", "2048")
this values remove the warning message i got in cassandra Logs, but i still have the same error : Failed to write statements.
In my spark log fail i found this error :
Failed to execute:
com.datastax.spark.connector.writer.RichBatchStatement#67827d57
com.datastax.driver.core.exceptions.InvalidQueryException: Key may not be empty
at com.datastax.driver.core.Responses$Error.asException(Responses.java:103)
at com.datastax.driver.core.DefaultResultSetFuture.onSet(DefaultResultSetFuture.java:140)
at com.datastax.driver.core.RequestHandler.setFinalResult(RequestHandler.java:293)
at com.datastax.driver.core.RequestHandler.onSet(RequestHandler.java:455)
at com.datastax.driver.core.Connection$Dispatcher.messageReceived(Connection.java:734)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.handler.timeout.IdleStateAwareChannelUpstreamHandler.handleUpstream(IdleStateAwareChannelUpstreamHandler.java:36)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.handler.timeout.IdleStateHandler.messageReceived(IdleStateHandler.java:294)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:559)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
I had the same problem and found the solution in the comments above (by Amine CHERIFI and maasg).
The column corresponding to the primary key was not always filled with a proper value (in my case with an empty string "").
This triggered the ERROR
ERROR QueryExecutor: Failed to execute: \
com.datastax.spark.connector.writer.RichBatchStatement#26ad2668 \
com.datastax.driver.core.exceptions.InvalidQueryException: Key may not be empty
The solution was to provide a default non-empty string.
If you are running in yarn-cluster mode, don't forget to check entire log on yarn using yarn logs -applicationId <appId> --appOwner <appOwner>.
This gave me more reasons for failure than the logs on yarn webUI
Caused by: com.datastax.driver.core.exceptions.UnavailableException: Not enough replicas available for query at consistency LOCAL_QUORUM (2 required but only 1 alive)
at com.datastax.driver.core.Responses$Error$1.decode(Responses.java:50)
at com.datastax.driver.core.Responses$Error$1.decode(Responses.java:37)
at com.datastax.driver.core.Message$ProtocolDecoder.decode(Message.java:266)
at com.datastax.driver.core.Message$ProtocolDecoder.decode(Message.java:246)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:89)
... 11 more
Solution is to set the spark.cassandra.output.consistency.level=ANY in your spark-defaults.conf
I resolved the issue by restarting my cluster as will as nodes.
Following is the things I tried.
I am also facing same issue I tried all the options above you mentioned in the blog but not success.
My data size is 174gb. Total 174 Gb data , My cluster having 3 node, each node having 16 cores and 48 gb ram.
I tried to lode 174gb in a single shot at that time i have the same issue.
After that I segregated 174 gb in 109 file each 1.6 Gb and tried to lode, this time I faced the same problem again after loading 100 files(each 1.6 gb).
I thought may be the problem with data in 101 file. I tried to load the first file and tried to lode the first file into the new table, and tried to lode new data into new table but all this cases having the issue.
Then I think it is the problem with cassandra cluster and restarted the cluster and nodes also.
Then the issue gone away.
Add a breakpoint in "com/datastax/spark/connector/writer/AsyncExecutor.scala:45 ", you can get the real exception.
In my case, replication_factor of my keyspace is 2, but I have only one alive.
Related
I am using Spark 2.2.0 to do data processing. I am using Dataframe.join to join 2 dataframes together, however I encountered this stack trace:
18/03/29 11:27:06 INFO YarnAllocator: Driver requested a total number of 0 executor(s).
18/03/29 11:27:09 ERROR FileFormatWriter: Aborting job null.
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:123)
at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:248)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:126)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:98)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenInner(BroadcastHashJoinExec.scala:197)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:82)
at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155)
...........
Caused by: org.apache.spark.SparkException: Cannot broadcast the table that is larger than 8GB: 10 GB
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:86)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:73)
at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:103)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
I searched on Internet for this error, but didn't get any hint or solution how to fix this.
Does Spark automatically broadcast Dataframe as part of the join? I am very surprise with this 8GB limit because I would have thought Dataframe supports "big data" and 8GB is not very big at all.
Thank you very much in advance for your advice on this.
Linh
After some reading, I've tried to disable the auto-broadcast and it seemed to work. Change Spark config with:
'spark.sql.autoBroadcastJoinThreshold': '-1'
Currently it is a hard limit in spark that the broadcast variable size should be less than 8GB. See here.
The 8GB size is generally big enough. If you consider that you re running a job with 100 executors, spark driver needs to send the 8GB data to 100 Nodes resulting 800GB network traffic. This cost will be much less if you don't broadcast and use simple join.
I'm having issues with the longevity of Spark-Kinesis Streaming application running on spark standalone cluster manager. The program runs for around 50 hours and stops receiving data from kinesis without giving any valid error why it stopped. But if i restart the application, it works for another day and half or so.
I'm seeing whole lot of errors during the program execution. I'm not sure this is the related to unexpected stoppage of events. Because these errors are there in logs even when the spark application is working fine.
There is no error specific to stoppage in driver or executor.Also I checked if there is any out of memory error but I was not able to spot in the logs. Could you please help me understand what are these error message means? Is this having anything to do with the longevity? Where do you think i should debug to understand whats happening with this?
2016-04-15 13:32:19 INFO KinesisRecordProcessor:58 - Shutdown: Shutting down workerId ip-10-205-1-150.us-west-2.compute.internal:6394789f-acb9-4702-8ea2-c2a3637d925a with reason ZOMBIE
2016-04-15 13:32:19 ERROR ShutdownTask:123 - Application exception.
java.lang.NullPointerException
at java.util.concurrent.ConcurrentHashMap.hash(ConcurrentHashMap.java:333)
at java.util.concurrent.ConcurrentHashMap.remove(ConcurrentHashMap.java:1175)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.removeCheckpointer(KinesisCheckpointer.scala:66)
at org.apache.spark.streaming.kinesis.KinesisReceiver.removeCheckpointer(KinesisReceiver.scala:249)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor.shutdown(KinesisRecordProcessor.scala:124)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.V1ToV2RecordProcessorAdapter.shutdown(V1ToV2RecordProcessorAdapter.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownTask.call(ShutdownTask.java:94)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:23)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
2016-04-15 13:32:19 ERROR ShutdownTask:123 - Application exception.
java.lang.NullPointerException
at java.util.concurrent.ConcurrentHashMap.hash(ConcurrentHashMap.java:333)
at java.util.concurrent.ConcurrentHashMap.remove(ConcurrentHashMap.java:1175)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.removeCheckpointer(KinesisCheckpointer.scala:66)
at org.apache.spark.streaming.kinesis.KinesisReceiver.removeCheckpointer(KinesisReceiver.scala:249)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor.shutdown(KinesisRecordProcessor.scala:124)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.V1ToV2RecordProcessorAdapter.shutdown(V1ToV2RecordProcessorAdapter.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownTask.call(ShutdownTask.java:94)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:23)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
016-04-15 13:33:12 INFO LeaseRenewer:235 - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5-095b-405f-ac9f-b7eff11e16d1 lost lease with key shardId-000000000046 - discovered during update
2016-04-15 13:33:12 WARN MetricsHelper:67 - No metrics scope set in thread RecurringTimer - Kinesis Checkpointer - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5- 095b-405f-ac9f-b7eff11e16d1, getMetricsScope returning NullMetricsScope.
2016-04-15 13:33:12 ERROR KinesisRecordProcessor:95 - ShutdownException: Caught shutdown exception, skipping checkpoint.
com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException: Can't update checkpoint - instance doesn't hold the lease for this shard
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibLeaseCoordinator.setCheckpoint(KinesisClientLibLeaseCoordinator.java:120)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.advancePosition(RecordProcessorCheckpointer.java:216)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:137)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply$mcV$sp(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor$.retryRandom(KinesisRecordProcessor.scala:145)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:75)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.checkpoint(KinesisCheckpointer.scala:75)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.org$apache$spark$streaming$kinesis$KinesisCheckpointer$$checkpointAll(KinesisCheckpointer.scala:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$1.apply$mcVJ$sp(KinesisCheckpointer.scala:117)
at org.apache.spark.streaming.util.RecurringTimer.triggerActionForNextInterval(RecurringTimer.scala:94)
at org.apache.spark.streaming.util.RecurringTimer.org$apache$spark$streaming$util$RecurringTimer$$loop(RecurringTimer.scala:106)
at org.apache.spark.streaming.util.RecurringTimer$$anon$1.run(RecurringTimer.scala:29)
2016-04-15 13:33:12 WARN KinesisCheckpointer:91 - Failed to checkpoint shardId shardId-000000000046 to DynamoDB.
com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException: Can't update checkpoint - instance doesn't hold the lease for this shard
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibLeaseCoordinator.setCheckpoint(KinesisClientLibLeaseCoordinator.java:120)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.advancePosition(RecordProcessorCheckpointer.java:216)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:137)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply$mcV$sp(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor$.retryRandom(KinesisRecordProcessor.scala:145)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:75)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.checkpoint(KinesisCheckpointer.scala:75)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.org$apache$spark$streaming$kinesis$KinesisCheckpointer$$checkpointAll(KinesisCheckpointer.scala:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$1.apply$mcVJ$sp(KinesisCheckpointer.scala:117)
at org.apache.spark.streaming.util.RecurringTimer.triggerActionForNextInterval(RecurringTimer.scala:94)
at org.apache.spark.streaming.util.RecurringTimer.org$apache$spark$streaming$util$RecurringTimer$$loop(RecurringTimer.scala:106)
at org.apache.spark.streaming.util.RecurringTimer$$anon$1.run(RecurringTimer.scala:29)
2016-04-15 13:33:12 INFO LeaseRenewer:116 - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5-095b-405f-ac9f-b7eff11e16d1 lost lease with key shardId-000000000046
2016-04-15 13:33:12 INFO MemoryStore:58 - Block input-2-1460727103359 stored as values in memory (estimated size 120.3 KB, free 171.8 MB)
I am running a spark streaming application with the input source as Kafka. The version of spark is 1.4.0.
My application runs fine under, but now when I enable checkpointing, run the job and then restart the job to see if check-pointing is working properly I get the following flooded into the logs and the job halts.
Could you help me in resolving this issue. Please let me know if any other information is needed. Basically I want to add the checkpointing feature to my spark streaming application.
15/10/30 13:23:00 INFO TorrentBroadcast: Started reading broadcast variable 4
java.io.IOException: org.apache.spark.SparkException: Failed to get broadcast_4_piece0 of broadcast_4
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1257)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at com.toi.columbia.aggregate.util.CalendarUtil.isRecordCassandraInsertableV1(CalendarUtil.java:103)
at com.toi.columbia.aggregate.stream.v1.AdvPublisherV1$3.call(AdvPublisherV1.java:124)
at com.toi.columbia.aggregate.stream.v1.AdvPublisherV1$3.call(AdvPublisherV1.java:110)
at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$fn$1$1.apply(JavaDStreamLike.scala:172)
at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$fn$1$1.apply(JavaDStreamLike.scala:172)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at com.datastax.spark.connector.util.CountingIterator.hasNext(CountingIterator.scala:10)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at com.datastax.spark.connector.writer.TableWriter.measureMaxInsertSize(TableWriter.scala:89)
at com.datastax.spark.connector.writer.TableWriter.com$datastax$spark$connector$writer$TableWriter$$optimumBatchSize(TableWriter.scala:107)
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:133)
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:127)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:98)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:97)
at com.datastax.spark.connector.cql.CassandraConnector.closeResourceAfterUse(CassandraConnector.scala:149)
at com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:97)
at com.datastax.spark.connector.writer.TableWriter.write(TableWriter.scala:127)
at com.datastax.spark.connector.streaming.DStreamFunctions$$anonfun$saveToCassandra$1$$anonfun$apply$1.apply(DStreamFunctions.scala:26)
at com.datastax.spark.connector.streaming.DStreamFunctions$$anonfun$saveToCassandra$1$$anonfun$apply$1.apply(DStreamFunctions.scala:26)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Failed to get broadcast_4_piece0 of broadcast_4
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:137)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:175)
at org.apache.spark.u
maybe you forgot to increase the spark.cleaner.ttl so the task gets cleaned.
see here https://issues.apache.org/jira/browse/SPARK-5594
I believe you are creating the broadcast variables inside
JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {}
Try creating the broadcast variables outside this overridden method.
As is clear from you exception - the broadcast variables are not being intitialized when you restart your chekpointed application.
cheers!
I have an issue related to datastax spark-Cassandra-connector. When I am trying to test our spark-Cassandra connections, I use bellow code. My problem is this code throw an exception after some time like half an hour. I think there is some connection issue, can anybody help, I am stuck.
SparkConf conf = new SparkConf(true)
.setMaster("local")
.set("spark.cassandra.connection.host",
Config.CASSANDRA_CONTACT_POINT)
.setAppName(Config.CASSANDRA_DB_NAME)
.set("spark.executor.memory",
Config.Spark_Executor_Memory);
SparkContext javaSparkContext = new SparkContext(conf);
SparkContextJavaFunctions functions = CassandraJavaUtil.javaFunctions(javaSparkContext);
for(;;){
JavaRDD<ObjectHandler> obj = functions.cassandraTable(Config.CASSANDRA_DB_NAME,
"my_users", ObjectHandler.class);
System.out.println("#####" + obj.count() + "#####");
}
Error:
java.lang.OutOfMemoryError: Java heap space
at org.jboss.netty.buffer.HeapChannelBuffer.slice(HeapChannelBuffer.java:201)
at org.jboss.netty.buffer.AbstractChannelBuffer.readSlice(AbstractChannelBuffer.java:323)
at com.datastax.driver.core.CBUtil.readValue(CBUtil.java:247)
at com.datastax.driver.core.Responses$Result$Rows$1.decode(Responses.java:395)
at com.datastax.driver.core.Responses$Result$Rows$1.decode(Responses.java:383)
at com.datastax.driver.core.Responses$Result$2.decode(Responses.java:201)
at com.datastax.driver.core.Responses$Result$2.decode(Responses.java:198)
at com.datastax.driver.core.Message$ProtocolDecoder.decode(Message.java:182)
at org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:66)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:310)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:108)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:318)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:89)
at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
at java.lang.Thread.run(Thread.java:722)
19:11:12.311 DEBUG [New I/O worker #1612][com.datastax.driver.core.Connection] Defuncting connection to /192.168.1.26:9042
com.datastax.driver.core.TransportException: [/192.168.1.26:9042] Unexpected exception triggered (java.lang.OutOfMemoryError: Java heap space)
at com.datastax.driver.core.Connection$Dispatcher.exceptionCaught(Connection.java:614)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:112)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:60)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.handler.codec.frame.FrameDecoder.exceptionCaught(FrameDecoder.java:377)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:112)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:559)
at org.jboss.netty.channel.Channels.fireExceptionCaught(Channels.java:525)
at org.jboss.netty.channel.AbstractChannelSink.exceptionCaught(AbstractChannelSink.java:48)
at org.jboss.netty.channel.DefaultChannelPipeline.notifyHandlerException(DefaultChannelPipeline.java:658)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:566)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:310)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:559)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:108)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:318)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:89)
at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
at org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:108)
at org.jboss.netty.util.internal.DeadLockProofWorker$1.run(DeadLockProofWorker.java:42)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
at java.lang.Thread.run(Thread.java:722)
Caused by: java.lang.OutOfMemoryError: Java heap space
at org.jboss.netty.buffer.HeapChannelBuffer.slice(HeapChannelBuffer.java:201)
at org.jboss.netty.buffer.AbstractChannelBuffer.readSlice(AbstractChannelBuffer.java:323)
at com.datastax.driver.core.CBUtil.readValue(CBUtil.java:247)
at com.datastax.driver.core.Responses$Result$Rows$1.decode(Responses.java:395)
at com.datastax.driver.core.Responses$Result$Rows$1.decode(Responses.java:383)
at com.datastax.driver.core.Responses$Result$2.decode(Responses.java:201)
at com.datastax.driver.core.Responses$Result$2.decode(Responses.java:198)
at com.datastax.driver.core.Message$ProtocolDecoder.decode(Message.java:182)
at org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:66)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:310)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:108)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:318)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:89)
at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
... 3 more
19:11:13.549 DEBUG [New I/O worker #1612][com.datastax.driver.core.Connection] [/192.168.1.26:9042-1] closing connection
19:11:12.311 DEBUG [main][com.datastax.driver.core.ControlConnection] [Control connection] error on /192.168.1.26:9042 connection, no more host to try
com.datastax.driver.core.ConnectionException: [/192.168.1.26:9042] Operation timed out
at com.datastax.driver.core.DefaultResultSetFuture.onTimeout(DefaultResultSetFuture.java:138)
at com.datastax.driver.core.Connection$ResponseHandler$1.run(Connection.java:763)
at org.jboss.netty.util.HashedWheelTimer$HashedWheelTimeout.expire(HashedWheelTimer.java:546)
at org.jboss.netty.util.HashedWheelTimer$Worker.notifyExpiredTimeouts(HashedWheelTimer.java:446)
at org.jboss.netty.util.HashedWheelTimer$Worker.run(HashedWheelTimer.java:395)
at org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:108)
at java.lang.Thread.run(Thread.java:722)
19:11:13.551 DEBUG [main][com.datastax.driver.core.Cluster] Shutting down
Exception in thread "main" com.datastax.driver.core.exceptions.NoHostAvailableException: All host(s) tried for query failed (tried: /192.168.1.26:9042 (com.datastax.driver.core.ConnectionException: [/192.168.1.26:9042] Operation timed out))
at com.datastax.driver.core.ControlConnection.reconnectInternal(ControlConnection.java:195)
at com.datastax.driver.core.ControlConnection.connect(ControlConnection.java:79)
at com.datastax.driver.core.Cluster$Manager.init(Cluster.java:1143)
at com.datastax.driver.core.Cluster.getMetadata(Cluster.java:313)
at com.datastax.spark.connector.cql.CassandraConnector$.com$datastax$spark$connector$cql$CassandraConnector$$createSession(CassandraConnector.scala:166)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$4.apply(CassandraConnector.scala:151)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$4.apply(CassandraConnector.scala:151)
at com.datastax.spark.connector.cql.RefCountedCache.createNewValueAndKeys(RefCountedCache.scala:36)
at com.datastax.spark.connector.cql.RefCountedCache.acquire(RefCountedCache.scala:61)
at com.datastax.spark.connector.cql.CassandraConnector.openSession(CassandraConnector.scala:72)
at com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:97)
at com.datastax.spark.connector.cql.CassandraConnector.withClusterDo(CassandraConnector.scala:108)
at com.datastax.spark.connector.cql.Schema$.fromCassandra(Schema.scala:131)
at com.datastax.spark.connector.rdd.CassandraRDD.tableDef$lzycompute(CassandraRDD.scala:206)
at com.datastax.spark.connector.rdd.CassandraRDD.tableDef(CassandraRDD.scala:205)
at com.datastax.spark.connector.rdd.CassandraRDD.<init>(CassandraRDD.scala:212)
at com.datastax.spark.connector.SparkContextFunctions.cassandraTable(SparkContextFunctions.scala:48)
at com.datastax.spark.connector.SparkContextJavaFunctions.cassandraTable(SparkContextJavaFunctions.java:47)
at com.datastax.spark.connector.SparkContextJavaFunctions.cassandraTable(SparkContextJavaFunctions.java:89)
at com.datastax.spark.connector.SparkContextJavaFunctions.cassandraTable(SparkContextJavaFunctions.java:140)
at com.shephertz.app42.paas.spark.SegmentationWorker.main(SegmentationWorker.java:52)
It looks like you ran out of heap space:
java.lang.OutOfMemoryError: Java heap space
The java-driver (what the spark-connector uses for interacting with cassandra) defuncted a connection because an OutOfMemoryError was thrown while processing a request. When a connection is defuncted, its host is brought down.
The NoHostAvailableException is likely being raised because all of your hosts were brought down because their connections were defuncted, likely because of OutOfMemoryError.
Do you know why you may be getting an OutOfMemoryError? What is your heap size? Are you doing anything that would cause a lot of objects to be on heap in your JVM? Do you possibly have a memory leak?
Your error probably lies in how the JVM is configured. If the settings are not correctly tuned, garbage collection could be causing some issues. If you are using Cassandra > 2.0 see Datastax's "Tuning Java Resources"
How Cassandra uses memory from the document:
Using a java-based system like Cassandra, you can typically allocate
about 8GB of memory on the heap before garbage collection pause time
starts to become a problem. Modern machines have much more memory than
that and Cassandra can make use of additional memory as page cache
when files on disk are accessed. Allocating more than 8GB of memory on
the heap poses a problem due to the amount of Cassandra metadata about
data on disk. The Cassandra metadata resides in memory and is
proportional to total data. Some of the components grow proportionally
to the size of total memory.
In Cassandra 1.2 and later, the Bloom filter and compression offset
map that store this metadata reside off-heap, greatly increasing the
capacity per node of data that Cassandra can handle efficiently. In
Cassandra 2.0, the partition summary also resides off-heap.
Please post your JVM options for further help.
I have a scalatest suite that's failing, and I have narrowed the cause down to the code that runs before tests and truncates a data table. If I run the following code I can recreate the problem
session.execute(s"TRUNCATE ${dao.tableName};")
session.execute(s"TRUNCATE ${dao.tableName};")
Throws:
Error during truncate: Cannot achieve consistency level ALL
com.datastax.driver.core.exceptions.TruncateException: Error during truncate: Cannot achieve consistency level ALL
at com.datastax.driver.core.exceptions.TruncateException.copy(TruncateException.java:35)
at com.datastax.driver.core.ResultSetFuture.extractCauseFromExecutionException(ResultSetFuture.java:271)
at com.datastax.driver.core.ResultSetFuture.getUninterruptibly(ResultSetFuture.java:187)
at com.datastax.driver.core.Session.execute(Session.java:126)
at com.datastax.driver.core.Session.execute(Session.java:77)
at postingstore.cassandra.dao.PostingGroupDaoTest$$anonfun$2.apply$mcV$sp(PostingGroupDaoTest.scala:43)
at postingstore.cassandra.dao.PostingGroupDaoTest$$anonfun$2.apply(PostingGroupDaoTest.scala:39)
at postingstore.cassandra.dao.PostingGroupDaoTest$$anonfun$2.apply(PostingGroupDaoTest.scala:39)
at org.scalatest.FunSuite$$anon$1.apply(FunSuite.scala:1265)
at org.scalatest.Suite$class.withFixture(Suite.scala:1974)
at ledger.testsupport.JUnitFunSuiteTest.withFixture(JUnitFunSuiteTest.scala:10)
at org.scalatest.FunSuite$class.invokeWithFixture$1(FunSuite.scala:1262)
at ...
Caused by: com.datastax.driver.core.exceptions.TruncateException: Error during truncate: Cannot achieve consistency level ALL
at com.datastax.driver.core.Responses$Error.asException(Responses.java:91)
at com.datastax.driver.core.ResultSetFuture$ResponseCallback.onSet(ResultSetFuture.java:122)
at com.datastax.driver.core.RequestHandler.setFinalResult(RequestHandler.java:224)
at com.datastax.driver.core.RequestHandler.onSet(RequestHandler.java:361)
at com.datastax.driver.core.Connection$Dispatcher.messageReceived(Connection.java:510)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
at org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:559)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:109)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:312)
at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:90)
at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
at org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:108)
at org.jboss.netty.util.internal.DeadLockProofWorker$1.run(DeadLockProofWorker.java:42)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
I'm using the datastax driver 2.0.0-RC2, and have a cluster of three nodes.
Any ideas as to what's going wrong here?
Turns out this was an issue with a node that had got into an inconsistent state due to running out of diskspace
This is because of consistency level . You can not truncate all nodes data using consistency level ALL . you have to put consistency level one or two then it will truncate all data from one nodes after some time this node will truncate all data from other nodes .