Display information about hardware in Linux/Unix - linux

I want to display information about my hardware, and there are three commands to do that:
dmesg
lshal
dmidecode
but I'm confused between these three commands.
So what is the difference among them?

I would like to suggest that you use lshw, a very helpful tool to list your hardware. From its man page:
lshw is a small tool to extract detailed information on the hardware configuration of the machine. It can report exact memory configuration, firmware version, mainboard configuration, CPU version and speed, cache configuration, bus speed, etc. on DMI-capable x86 or IA-64 systems and on some PowerPC machines (PowerMac G4 is known to work).

The dmesg command is used to write the kernel messages in Linux and other Unix-like operating systems to standard output.
From man pages:
lshal - list HAL devices
lshal is a utility for displaying items in the HAL device database.
For more information about both the big picture and specific HAL
properties, refer to the HAL spec which can be found in
/usr/share/doc/hal-0.5.14/spec/hal-spec.html depending on the
distribution.
dmidecode - DMI Table Decoder
dmidecode is a tool for dumping a computer's DMI (some say SMBIOS )
table contents in a human-readable format. This table contains a
description of the system's hardware components, as well as other
useful pieces of information such as serial numbers and BIOS revision.
Thanks to this table, you can retrieve this information without having
to probe for the actual hardware. While this is a good point in terms
of report speed and safeness, this also makes the presented
information possibly unreliable.

The dmesg command is used to write the kernel messages in Linux and other Unix-like operating systems to standard output (which by default is the display screen).
lshal is a utility for displaying items in the HAL device database.
dmidecode is a tool for dumping a computer's DMI (some say SMBIOS ) table contents in a human-readable format. This table contains a description of the system's hardware components, as well as other useful pieces of information such as serial numbers and BIOS revision. Thanks to this table, you can retrieve this information without having to probe for the actual hardware. While this is a good point in terms of report speed and safeness, this also makes the presented information possibly unreliable.
I would suggest to go for "dmesg" and use the options as per you need to obtain information about the hardware on a system.
dmesg [options]

Related

Linux, CPU-architecture in which file stored

I like to know, in which file the value for the CPU architecture is stored on Linux e.g. x86_64.
I know several methods (shell commands) in order to access this value like lscpu or uname -a.
Furthermore I'm aware of the Qt-Method QSysInfo::currentCpuArchitecture(). And they all provide the required information.
But I like to create an OS-Interface which retrieves the information of the underlying operating system (in my case Linux) only by using "Linux-Tools" like information from files in /proc/....
I also know that I can run a shell command in my program by using popen() and access the results by the std streamer classes. That's no problem. But unfortunately we don't like run shell commands in our software.
I have looked in several files like
/proc/version, /proc/cpuinfo, /proc/devices or in files in subfolders of /proc.
But unfortunately it seems to me as if I always overlooked this piece of information. I'm sure that it has to be in a file because the method QSysInfo::currentCpuArchitecture() access this information, too.
So if somebody knows where this information is placed on Linux I would be happy if he or she let me know.
With kind regards
According man lscpu
lscpu gathers CPU architecture information from sysfs,
/proc/cpuinfo ...
looking for the information under /proc and cpuinfo was the right idea, since the information is there, but not in the format you were expecting. It is somehow "hidden" in line flags. You like to look for lm (long mode).
cat /proc/cpuinfo | grep "flags\| lm "
If the flag for long mode is set you are on x86_64.
Thanks / Credits to
What do the flags in /proc/cpuinfo mean?
CPUID, bit 29 (LM)
How the information is gathered and processed you can find in sys-utils/lscpu.c, in example from line 369-378.
Other CPU modes are
Real Mode, 16 bit CPU, Intel 8086 or 8080 emulation mode, all x86 CPU start in this mode after reset
Protected Mode, 32-bit CPU

Dumping hardware state of an Intel HD Audio hardware

Is there a way to fully dump the configuration of an Intel HDA-based audio codec, including current hardware state?
The interface at /proc/asound/card0/codec#0 only reflects what's known to the kernel, not the real hardware state.
The PCI configuration space (read with lspci -x) doesn't show much (it doesn't even show volume/amplifier gain values).
For context : I'm trying to debug an audio issue with my laptop, where headphones output white noise when resuming from standby. The white noise doesn't change when increasing volume, but disappears only when powering down the codec.
This leads me to believe that the issue is likely caused by either a buggy ACPI or a change in the codec's configuration, or even both. My goal is to get as much data as I can on before/after states and compare them, but both methods described above failed for me.
I found that hdajackretask as part of the alsa-tools-gui package on my Debian Stretch GNU/Linux Os looks very interesting in getting the internal parts of the sound-card in the right configuration for what I wanted.
I'm just looking to see whether it is portable to my other OS as I have only seem to have stereo audio on FreeBSD and I think this would help. In your case it might help your to decode how things are configured and to spot any changes. The normal screen is at least helpful in determining which connection is which:
What looks more interesting is the "Advanced override":
I am about to reboot and see whether I have managed to turn the grey connector be the "side"-channel outputs....

Is there a common linux utility/way to query information about all the disks on a system?

I'm writing a script that will gain remote access to machines in a lab and assess the disks in the system and what it is used for. I need to:
1. get all of the disks in a system, this also includes SAN disks as
well as non standard HW raid controllers.
2. check if the disks are part of a software raid.
3. check the disk for partitions and if they are boot-able.
4. gather basic information about the drive including manufacturer block size etc. .
The problem that I am running into is that there doesn't seem a very convenient place to find all of this information with out writing 10+ pages of regular expressions of each of the utilities that need to be used to find this information. Surprisingly, this is easier on windows since I can use WMI. IS there a much more programmatic way to gather all of the information that I seek in linux?
The tools I'd think of:
kpartx, partprobe, blkid, lshw; cfdisk and parted
I think parted is geared to automation.
lshw has xml output.
mount
mount [-l] [-t type]
lists all mounted filesystems (of type type). The option -l adds the labels in this listing.
http://linux.die.net/man/8/mount

Getting ARM/WM8350 audio and power management working in linux

I have a rooted Sony prs900, running a linux 2.6.23 #2 PREEMPT kernel, for ARMv6. (Montavista linux kernel). I'm having problems with figuring out how power management works, both for running the system and for powering up and down the audio port.
I can neither figure out how to read the battery/powerline status information, nor get the audio chip to play sound, etc ... although I have been studying the kernel modules for a while...
It's worth a little money for help, say $100 paypal donation to an email account, (or more if this takes a long time...) for the first person able to explain to me how to do them in a way that works.
Eg: read battery status, and change some power modes like getting the audio amplifiers to power up/down so that the audio played to /dev/dsp (oss emulation) actually comes out as sound rather than just being consumed by the chip and ignored...
The actual sony kernel, and binary packages of cross compiler tools are located on the main page. Actual kernel sourcecode is also available.
What I have learned so far myself :
The sony is using a wolfson micro WM8350 audio driver and battery charger/power management chip for all the system's power; eg: it can power down/up the SD memory cards, send more power to the cpu, power up audio amplifiers, etc. See: WM8350 Datasheet.
Pretty much, the whole problem revolves around getting the WM8350 kernel drivers to work...
Although the company brags quite a bit about it's support under linux, they don't have any application notes or examples that are actually helpful that I can find, other than the datasheet. I suspect the kernel drivers I have are beta code, because they don't seem to be behaving well (several error messages in the kernel log about wm8350 registers not being readable happen at every boot even when running only the sony's native software...).
The kernel driver's source-code of most interest are in: linux-2.6.23_091126/drivers/mxc/pmic/{core,wm8350}
Notice, the wm8350 is a competitor to the MC14783, but the linux kernel drivers use the same {core} driver source code for both chips; The sony ONLY has the wm8350 on it -- there is no MC14783 present.
The code that I most want most desperately to understand how to make operate is found in the subdirectory {wm8350}, eg: wm8350/wm8350pm/power_supply_sysfs.c.
I want the audio to fire up too, but 'm not quite sure where the pertinent audio amplifier code is yet...
Very clearly the wm8350pm code is designed to export a /sys directory interface; right now /sys is mounted and operational on the system; but I'm not very familiar with the semantics of these newer style interfaces... they aren't quite like the old APM power interfaces for Linux laptops...
First I checked the obvious:
If I do a "cat /sys/power/state" it returns the word "mem" and nothing else.
The file has permissions -rw-r--r--, so potentially it could be written -- but I don't know with what. The string "mem" does not exist anywhere in the source code for the wm8350pm drivers, so I don't even know if /sys/power/state is part of the source code.
Doing a find /sys -iname "wm8350" reveals a handful of directories with the patterns:
wm8350-rtc , wm8350-pmic , wm8350-bl , wm8350-power , wm8350-led
wm8350-hifi-dai , wm8350-codec
wm8350-imx32ads.0
So, I do an ls-l on each directory, and look for actual files rather than symbolic links or subdirectories, and what I find are stock useless writable files: bind, unbind, uevent,
and a very few read only files: pmic_reg, dapm_widget, modalias, codec_reg which aren't very helpful.
It's no surprise that:
Doing: cat /sys/devices/platform/wm8350-ebx5016-audi/modalias gives "wm8350-ebx5016-audio"
Doing: cat /sys/devices/platform/wm8350-imx32ads.0/modalias gives "wm8350-imx32ads"
and since audio is off... Doing: cat /sys/devices/platform/wm8350-ebx5016-audi/dapm_widget reveals the audio state:
Headphone Jack: Off
Line In Jack: On
Mic Bias: Off
Left DAC: Off
Right DAC: Off
... (all else off and omitted except )...
EBX5016-hifi: PM State: D3hot
The last two files, I expect should do wm8350 chip register dumps... and one did.
Doing: cat /sys/devices/wm8350-pmic/pmic-reg causes a long pause, then nothing is printed.
but:
Doing: cat /sys/devices/wm8350/platform/wm8350-ebx5016-audi/wm8350-codec/codec_reg does prints a list of registers up to e8 which is just a few bytes larger than the datasheet says the chip should be (0x00 to 0xe6).
I tried using a python program to play wav files, (works on my desktop computer), and I noticed that /dev/dsp does open, the mixers DO set volume levels, and nothing comes out. So -- the audio driver is not able to enable the sound amplifiers on it's own automatically.
There are no alsa sound files in /dev, nor are any alsa tools found on the embedded machine... so I assume Sony is strictly using OSS /dev/dsp and /dev/mixer.
There is only one other access point I can find to the ws8350:
There IS a device driver /dev/wm8350.
That driver created by the source code in subdirectory wm8350/wm8350_reg.c ; in theory it should be able to read and write to all registers using ioctls() calls from a user space. However, something appears grossly wrong with it, for I wrote a test program to read the wm8350 registers... and most of the registers return error messages rather than allowing to be read, including the most pulic ID registers (0x00, 0x01) etc.
So, I'm quite stuck. Pointers, thoughts, hints, are quite desired.
I would like to change your question a little bit.
How does Linux ASOC (alsa system on chip) power management work?
I will answer this and then give some hints on using this specific chip.
.. If I do a cat /sys/power/state it returns the word "mem" and nothing else. The file has permissions -rw-r--r--, so potentially it could be written -- but I don't know with what. The string "mem" does not exist anywhere in the source code for the wm8350pm drivers, so I don't even know if /sys/power/state is part of the source code.
You need to get an understanding of the Linux driver model. Hardware in Linux is structured like a tree. The rational is that things must be powered up/down in specific sequences. For instance, you should not power down the PCI bus controller before powering down the PCI peripherals. Linux builds a tree of hardware and each driver (code) and device (data/actual hardware) has specific call backs/function pointers which handle some specific tasks.
probe - Are you there? Determines actual hardware/device is present.
remove - Shuts down device. Module removal, power off, etc.
suspend - going to sleep.
resume - waking up.
Three and four may look interesting to you. Now, to read about what /sys/power/state is about. The text mem, means that suspend to memory is supported by your system. In this mode, Linux does these steps,
Find first lowest level active bus.
suspend devices on that bus.
suspend bus and de-activate.
If a bus is active go to step 1.
Set CPU to low power state (suspend to RAM).
This is not quite the full story. A few devices may support a wake-up. They will have extra call-backs to enable waking the system from sleep modes. Read the documentation to find out about this.
That is general power management and driver/device structure. Now, how is the ASOC (alsa system on chip) structured?
There are typically three drivers/devices that get stitched together.
Codec - The wm8350 in your case. This includes audio amplifier drive circuitry and can include sound mixing and source controls. Supports digital to analog and analog to digital, typically through an i2s interface. The i2s is not the only interface. Usually a register bank is controlled through a secondary interface; i2c in the wm8350 case.
DAI - Refer to chapter 1.2.18.1 of the iMx31 reference manual; the hardware is called the SSI by Freescale. The next chapter on the AUDMUX is also useful to understand audio support on the iMx31/32.
Machine file - this is the board specific routing. It hooks the DAI to the codec and is the parent of both. It provides board clocking information and other specific configuration. For instance, it may use the AUDMUX to route the physical pins to the SSI block.
An i2c (or SPI) interface from the codec driver to send control commands to the coded chip. Some chips might uses a wacky i2s interface or something else for control (but not in your case).
Now if you understood this, you will see that some features of the wm8350 seem to break the Linux model. The DAI interface can be stopped (digital audio), but the i2c interface must remain alive to program the registers related to the power functionality in the codec/PMIC (power management IC).
The latest WM8350 calls the IC a multi-function device and support was introduced in 2.6.35. The initial support may not have included the WM8350 features. Unfortunately, without some details on the layout of the Sony prs900 board, it would be difficult to know how to use the WM8350 PMIC functionality. The code will involve the iMx31 CPU, the WM8350, the i2c connection, and possibly some power supply circuitry.
For certain, you can just try echo mem > /sys/power/state and see what happens. If it works, you are lucky. The power/current consumption in sleep might not be optimal, but it will probably be hard to fix with the 2.6.23 kernel. You will want to look through the /sys directories for wake-up sources and possibly register these before issuing the suspend to memory command.
I can neither figure out how to read the battery/powerline status information, nor get the audio chip to play sound, etc ... although I have been studying the kernel modules for a while...
From the above discussions, the battery and powerline status will probably be found through another device. However, the pmic_reg file may actually give the status if things are connected properly on the board.
The audio chip will use ALSA. You need to use either alsamixer or the command line amixer to set up audio routes through the codec, so the DAI channel (PCM from iMx32) is routed and sent to the speaker. To minimize power consumption, things are usually turned off by default. The /dev/dsp files are just OSS compatibility. This configuration will support ALSA natively. You are better off to use ALSA if possible.
Donate to the OSF and get a tax receipt, if this was helpful enough.

Hardware recognition in user space Linux

I want to be able to inspect my Linux machine hardware in C.
How do I get the information that appear in dmesg in C ?
For example, for keyboard the message is input: AT Translated Set 2 keyboard as /devices/platform/i8042/serio0/input/input0
I want to get in my program the label, AT Translated Set 2, and the path, /devices/platform/i8042/serio0/input/input0.
Any idea how to do so ?
amit
You can also look at the contents of files in /proc.
/proc/version, /proc/ioports, /proc/iomem, /proc/meminfo, and others have a lot of information in them.
The files under /proc/bus have additional information about the system's hardware devices.
I'd also recommend looking at the source code for usbutils and pciutils for example code to get the output from the lsusb and lspci commands respectively.
It uses the klogctl call.
Best thing is to read the source code yourself, it can be downloaded here: util-linux
You would want to use libhal, and connect to the hal daemon. If HAL isn't there, look for a mounted sysfs partition. Check out /sys/devices, or work backwards through /sys/bus.
If neither HAL nor sysfs is available, reconsider your approach or restrict your scope.

Resources