cassandra-spark-connector error with repartitionByCassandraReplica function - cassandra

I'm trying to use the new join functionality from the 1.2 version but I get an error with the repartitionByCassandraReplica function in the repl.
I've tried to duplicate the example of the website and created a cassandra table (shopping_history) with a couple of elements :
https://github.com/datastax/spark-cassandra-connector/blob/master/doc/2_loading.mde
import com.datastax.spark.connector.rdd._
import com.datastax.spark.connector.cql.CassandraConnector
import com.datastax.spark.connector._
import com.datastax.driver.core._
case class CustomerID(cust_id: Int)
val idsOfInterest = sc.parallelize(1 to 1000).map(CustomerID(_))
val repartitioned = idsOfInterest.repartitionByCassandraReplica("cim_dev", "shopping_history", 10)
repartitioned.first()
I get this error :
15/04/13 18:35:43 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 2, dev2-cim.aid.fr): java.lang.ClassNotFoundException: $line31.$read$$iwC$$iwC$CustomerID
at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:344)
at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:59)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1613)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1774)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62)
at org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:133)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$27.apply(RDD.scala:1098)
at org.apache.spark.rdd.RDD$$anonfun$27.apply(RDD.scala:1098)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1353)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
I use spark 1.2.0 with connector 1.2.0 RC 3.
The joinWithCassandraTable function used on idsOfInterest works.
I'm also curious about the differences betwween : joinWithCassandraTable / cassandraTable with a In clause / foreachPartition(withSessionDo) syntax.
Do they all request the data to the local node which acts as a coordinator ?
Is joinWithCassandraTable combine with repartitionByCassandraReplica as efficient as an async query, requesting data only to the local node ? What happen if repartitionByCassandraReplica is not applied ?
I've already asked this question on the google group forum of the cassandra connector :
https://groups.google.com/a/lists.datastax.com/forum/#!topic/spark-connector-user/b615ANGSySc
Thanks

I'll answer your second question here, and followup with the first portion if I can figure something out based on more information.
I'm also curious about the differences betwween :
joinWithCassandraTable / cassandraTable with a In clause /
foreachPartition(withSessionDo) syntax.
The cassandraTable with an in Clause will create a single spark partition. So it may be allright for very small in clauses, but the clause must be serialized from the driver to the spark application. This could be really bad for large in clauses and in general we don't want to send data back and forth from the spark driver to the executors if we don't have to.
joinWithCassandraTable and foreachPartition(withSessionDo) are very similar. The main difference is that the joinWithCassandraTable call is using the Connector transformation and reading code which should make it much easier to get Scala objects out of your Cassandra Rows. In both of these cases your data stays in RDD form and won't get serialized back to the driver. They will also both use the partitioner from the previous RDD (or last RDD which exposes a preferredLocation method) so they will be able to do work with repartitionByCassandraTable.
If repartitionByCassandraTable is not applied the data will be requested on a node that may or may not be a coordinator for the information you are requesting. This will add an additional network hop in your query but this may not be a very large performance penalty. The times at which you want to repartition before joining really depend on the total volume of data and the cost of the spark shuffle in the repartition op.

Related

Executor heartbeat timed out Spark on DataProc

I am trying to fit a ml model in Spark (2.0.0) on a Google DataProc Cluster. When fitting the model I receive an Executor heartbeat timed out error. How can I resolve this?
Other solutions indicate this is probably due to Out of Memory of (one of) the executors. I read as solutions: Set the right setting, repartition, cache, and get a bigger cluster. What can I do, preferably without setting up a larger cluster? (Make more/less partitions? Cache less? Adjust settings?)
My setting:
Spark 2.0.0 on a Google DataProc Cluster:
1 Master and 2 workers all with the same specs: n1-highmem-8 -> 8 vCPUs, 52.0 GB memory - 500GB disk
Settings:
spark\:spark.executor.cores=1
distcp\:mapreduce.map.java.opts=-Xmx2457m
spark\:spark.driver.maxResultSize=1920m
mapred\:mapreduce.map.java.opts=-Xmx2457m
yarn\:yarn.nodemanager.resource.memory-mb=6144
mapred\:mapreduce.reduce.memory.mb=6144
spark\:spark.yarn.executor.memoryOverhead=384
mapred\:mapreduce.map.cpu.vcores=1
distcp\:mapreduce.reduce.memory.mb=6144
mapred\:yarn.app.mapreduce.am.resource.mb=6144
mapred\:mapreduce.reduce.java.opts=-Xmx4915m
yarn\:yarn.scheduler.maximum-allocation-mb=6144
dataproc\:dataproc.scheduler.max-concurrent-jobs=11
dataproc\:dataproc.heartbeat.master.frequency.sec=30
mapred\:mapreduce.reduce.cpu.vcores=2
distcp\:mapreduce.reduce.java.opts=-Xmx4915m
distcp\:mapreduce.map.memory.mb=3072
spark\:spark.driver.memory=3840m
mapred\:mapreduce.map.memory.mb=3072
yarn\:yarn.scheduler.minimum-allocation-mb=512
mapred\:yarn.app.mapreduce.am.resource.cpu-vcores=2
spark\:spark.yarn.am.memoryOverhead=384
spark\:spark.executor.memory=2688m
spark\:spark.yarn.am.memory=2688m
mapred\:yarn.app.mapreduce.am.command-opts=-Xmx4915m
Full Error:
Py4JJavaError: An error occurred while calling o4973.fit.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 151 in stage 16964.0 failed 4 times, most recent failure: Lost task 151.3 in stage 16964.0 (TID 779444, reco-test-w-0.c.datasetredouteasvendor.internal): ExecutorLostFailure (executor 14 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 175122 ms
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1911)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:893)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.collect(RDD.scala:892)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$countByKey$1.apply(PairRDDFunctions.scala:372)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$countByKey$1.apply(PairRDDFunctions.scala:372)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.PairRDDFunctions.countByKey(PairRDDFunctions.scala:371)
at org.apache.spark.rdd.RDD$$anonfun$countByValue$1.apply(RDD.scala:1156)
at org.apache.spark.rdd.RDD$$anonfun$countByValue$1.apply(RDD.scala:1156)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.countByValue(RDD.scala:1155)
at org.apache.spark.ml.feature.StringIndexer.fit(StringIndexer.scala:91)
at org.apache.spark.ml.feature.StringIndexer.fit(StringIndexer.scala:66)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:211)
at java.lang.Thread.run(Thread.java:745)
As this question doesn't have an answer, to summarize the issue appears to have been related to spark.executor.memory being set too low, causing occasional out-of-memory errors on an executor.
The suggested fix was to first try starting with the default Dataproc config, which tries to fully use all cores and memory available on the instance. If issues continue, then adjust spark.executor.memory and spark.executor.cores to increase the amount of memory available per task (essentially spark.executor.memory / spark.executor.cores).
Dennis also gives more details about the Spark memory config on Dataproc in the following answer:
Google Cloud Dataproc configuration issues

Bad queries error handling in Spark Cassandra Connector

I have a Spark Streaming application that has multiple data flows (DStreams) that write in the same Cassandra table. When testing my application on a large amount of random data, I'm receiving an error from Spark Cassandra Connector that has very little information helpful for debugging. The error looks like this:
java.util.concurrent.ExecutionException: com.datastax.driver.core.exceptions.InvalidQueryException: Key may not be empty
at com.baynote.shaded.com.google.common.util.concurrent.AbstractFuture$Sync.getValue(AbstractFuture.java:299)
at com.baynote.shaded.com.google.common.util.concurrent.AbstractFuture$Sync.get(AbstractFuture.java:286)
at com.baynote.shaded.com.google.common.util.concurrent.AbstractFuture.get(AbstractFuture.java:116)
at com.datastax.spark.connector.rdd.CassandraJoinRDD$$anonfun$fetchIterator$1.apply(CassandraJoinRDD.scala:268)
at com.datastax.spark.connector.rdd.CassandraJoinRDD$$anonfun$fetchIterator$1.apply(CassandraJoinRDD.scala:268)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at com.datastax.spark.connector.util.CountingIterator.hasNext(CountingIterator.scala:12)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:189)
at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:64)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: Key may not be empty
at com.datastax.driver.core.Responses$Error.asException(Responses.java:136)
at com.datastax.driver.core.DefaultResultSetFuture.onSet(DefaultResultSetFuture.java:179)
at com.datastax.driver.core.RequestHandler.setFinalResult(RequestHandler.java:184)
at com.datastax.driver.core.RequestHandler.access$2500(RequestHandler.java:43)
at com.datastax.driver.core.RequestHandler$SpeculativeExecution.setFinalResult(RequestHandler.java:798)
at com.datastax.driver.core.RequestHandler$SpeculativeExecution.onSet(RequestHandler.java:617)
at com.datastax.driver.core.Connection$Dispatcher.channelRead0(Connection.java:1005)
at com.datastax.driver.core.Connection$Dispatcher.channelRead0(Connection.java:928)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:831)
at io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:346)
at io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:254)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
... 1 more
The problem with it is that I can't tell which DStream, and which data cause it. I can check every DStream that writes to Cassandra, or write my own data validator, but I'm looking for a more generic solution.
The other problem is that it the error kills the whole job instead of ignoring it and continue writing other data. Basically in case of simple non-spark writing I would catch the exception, log it and continue writing the rest of the data. Is there a way to do something like that in Spark Cassandra Connector?
So is there something I can do about those two problems?
I think we should consider two cases:
Validate your input data to make sure data for Key (in cassandra columns) is not Null or invalid data format
Your data is RDD, so you can sort to ignore invalid data before calling save method.

FileNotFoundException in apache spark(1.6) job during shuffle files

I am working on spark 1.6, it is failing my job with following error
java.io.FileNotFoundException: /data/05/dfs/dn/yarn/nm/usercache/willir31/appcache/application_1413512480649_0108/spark-local-20141028214722-43f1/26/shuffle_0_312_0.index (No such file or directory)
java.io.FileOutputStream.open(Native Method)
java.io.FileOutputStream.(FileOutputStream.java:221)
org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:123)
org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:192)
org.apache.spark.util.collection.ExternalSorter$$anonfun$writePartitionedFile$4$$anonfun$apply$2.apply(ExternalSorter.scala:733)
org.apache.spark.util.collection.ExternalSorter$$anonfun$writePartitionedFile$4$$anonfun$apply$2.apply(ExternalSorter.scala:732)
scala.collection.Iterator$class.foreach(Iterator.scala:727)
org.apache.spark.util.collection.ExternalSorter$IteratorForPartition.foreach(ExternalSorter.scala:790)
org.apache.spark.util.collection.ExternalSorter$$anonfun$writePartitionedFile$4.apply(ExternalSorter.scala:732)
org.apache.spark.util.collection.ExternalSorter$$anonfun$writePartitionedFile$4.apply(ExternalSorter.scala:728)
scala.collection.Iterator$class.foreach(Iterator.scala:727)
scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
org.apache.spark.util.collection.ExternalSorter.writePartitionedFile(ExternalSorter.scala:728)
org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:70)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
I am performing join operations. When i carefully look into the error and check my code i found it is failing while it is writing back to CSV from dataFrame. But i am not able to get rid of it. I am not using hdp, i have separate installation for all components.
This types of errors typically occur when there are deeper problems with some tasks, like significant data skew. Since you don't provide enough details (please be sure to read How To Ask and How to create a Minimal, Complete, and Verifiable example) and job statistics the only approach that I can think off is to significantly increase number of shuffle partitions:
sqlContext.setConf("spark.sql.shuffle.partitions", 2048)

Failed to get broadcast_4_piece0 of broadcast_4 in Spark Streaming

I am running a spark streaming application with the input source as Kafka. The version of spark is 1.4.0.
My application runs fine under, but now when I enable checkpointing, run the job and then restart the job to see if check-pointing is working properly I get the following flooded into the logs and the job halts.
Could you help me in resolving this issue. Please let me know if any other information is needed. Basically I want to add the checkpointing feature to my spark streaming application.
15/10/30 13:23:00 INFO TorrentBroadcast: Started reading broadcast variable 4
java.io.IOException: org.apache.spark.SparkException: Failed to get broadcast_4_piece0 of broadcast_4
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1257)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at com.toi.columbia.aggregate.util.CalendarUtil.isRecordCassandraInsertableV1(CalendarUtil.java:103)
at com.toi.columbia.aggregate.stream.v1.AdvPublisherV1$3.call(AdvPublisherV1.java:124)
at com.toi.columbia.aggregate.stream.v1.AdvPublisherV1$3.call(AdvPublisherV1.java:110)
at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$fn$1$1.apply(JavaDStreamLike.scala:172)
at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$fn$1$1.apply(JavaDStreamLike.scala:172)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at com.datastax.spark.connector.util.CountingIterator.hasNext(CountingIterator.scala:10)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at com.datastax.spark.connector.writer.TableWriter.measureMaxInsertSize(TableWriter.scala:89)
at com.datastax.spark.connector.writer.TableWriter.com$datastax$spark$connector$writer$TableWriter$$optimumBatchSize(TableWriter.scala:107)
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:133)
at com.datastax.spark.connector.writer.TableWriter$$anonfun$write$1.apply(TableWriter.scala:127)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:98)
at com.datastax.spark.connector.cql.CassandraConnector$$anonfun$withSessionDo$1.apply(CassandraConnector.scala:97)
at com.datastax.spark.connector.cql.CassandraConnector.closeResourceAfterUse(CassandraConnector.scala:149)
at com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:97)
at com.datastax.spark.connector.writer.TableWriter.write(TableWriter.scala:127)
at com.datastax.spark.connector.streaming.DStreamFunctions$$anonfun$saveToCassandra$1$$anonfun$apply$1.apply(DStreamFunctions.scala:26)
at com.datastax.spark.connector.streaming.DStreamFunctions$$anonfun$saveToCassandra$1$$anonfun$apply$1.apply(DStreamFunctions.scala:26)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Failed to get broadcast_4_piece0 of broadcast_4
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:137)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:175)
at org.apache.spark.u
maybe you forgot to increase the spark.cleaner.ttl so the task gets cleaned.
see here https://issues.apache.org/jira/browse/SPARK-5594
I believe you are creating the broadcast variables inside
JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {}
Try creating the broadcast variables outside this overridden method.
As is clear from you exception - the broadcast variables are not being intitialized when you restart your chekpointed application.
cheers!

accessing IMap from EntryProcessor

Can IMap or other Hazelcast distributed data structures like AtomicLong be accessed from within process() method of an EntryProcessor?
I'm getting following exception:
java.util.concurrent.ExecutionException: java.lang.IllegalThreadStateException: Thread[hz.Alcatraz-ANP-Sys-HAZLE-2.actiance.local.partition-operation.thread-5,5,Alcatraz-ANP-Sys-HAZLE-2.actiance.local] cannot make remote call: com.hazelcast.concurrent.lock.operations.LockOperation#3229190f
at java.util.concurrent.FutureTask.report(FutureTask.java:122) ~[na:1.7.0_51]
at java.util.concurrent.FutureTask.get(FutureTask.java:188) ~[na:1.7.0_51]
at com.hazelcast.executor.impl.DistributedExecutorService$CallableProcessor.run(DistributedExecutorService.java:189) ~[hazelcast-3.3_actiance.jar:3.3]
at com.hazelcast.util.executor.CachedExecutorServiceDelegate$Worker.run(CachedExecutorServiceDelegate.java:209) [hazelcast-3.3_actiance.jar:3.3]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) [na:1.7.0_51]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) [na:1.7.0_51]
at java.lang.Thread.run(Thread.java:744) [na:1.7.0_51]
at com.hazelcast.util.executor.HazelcastManagedThread.executeRun(HazelcastManagedThread.java:76) [hazelcast-3.3_actiance.jar:3.3]
at com.hazelcast.util.executor.HazelcastManagedThread.run(HazelcastManagedThread.java:92) [hazelcast-3.3_actiance.jar:3.3]
I'm using Hazelcast version 3.3
You can access other datastructures but you need to make sure they're in the same data partition as the currently processed entry. This means you can use (for example) data affinity to pin all data together in the same partition.
Sharing an IAtomicLong between different partitions is not possible though.
PS: You also shouldn't mutate other data than the current processed entry since it might end up in a deadlock between different nodes.

Resources