Suppose I have a column family:
CREATE TABLE update_audit (
scopeid bigint,
formid bigint,
time timestamp,
record_link_id bigint,
ipaddress text,
user_zuid bigint,
value text,
PRIMARY KEY ((scopeid, formid), time)
) WITH CLUSTERING ORDER BY (time DESC)
With two secondary indexes, where record_link_id is a high-cardinality column:
CREATE INDEX update_audit_id_idx ON update_audit (record_link_id);
CREATE INDEX update_audit_user_zuid_idx ON update_audit (user_zuid);
According to my knowledge Cassandra will create two hidden column families like so:
CREATE TABLE update_audit_id_idx(
record_link_id bigint,
scopeid bigint,
formid bigint,
time timestamp
PRIMARY KEY ((record_link_id), scopeid, formid, time)
);
CREATE TABLE update_audit_user_zuid_idx(
user_zuid bigint,
scopeid bigint,
formid bigint,
time timestamp
PRIMARY KEY ((user_zuid), scopeid, formid, time)
);
Cassandra secondary indexes are implemented as local indexes rather than being distributed like normal tables. Each node only stores an index for the data it stores.
Consider the following query:
select * from update_audit where scopeid=35 and formid=78005 and record_link_id=9897;
How will this query execute 'under the hood' in Cassandra?
How will a high-cardinality column index (record_link_id) affect its performance?
Will Cassandra touch all nodes for the above query? Why?
Which criteria will be executed first, base table partition_key or secondary index partition_key? How will Cassandra intersect these two results?
select * from update_audit where scopeid=35 and formid=78005 and record_link_id=9897;
How the above query will work internally in cassandra?
Essentially, all data for partition scopeid=35 and formid=78005 will be returned, and then filtered by the record_link_id index. It will look for the record_link_id entry for 9897, and attempt to match-up entries that match the rows returned where scopeid=35 and formid=78005. The intersection of the rows for the partition keys and the index keys will be returned.
How high-cardinality column (record_link_id)index will affect the query performance for the above query?
High-cardinality indexes essentially create a row for (almost) each entry in the main table. Performance is affected, because Cassandra is designed to perform sequential reads for query results. An index query essentially forces Cassandra to perform random reads. As cardinality of your indexed value increases, so does the time it takes to find the queried value.
Does cassandra will touch all nodes for the above query? WHY?
No. It should only touch a node that is responsible for the scopeid=35 and formid=78005 partition. Indexes likewise are stored locally, only contain entries that are valid for the local node.
creating index over high-cardinality columns will be the fastest and best data model
The problem here is that approach does not scale, and will be slow if update_audit is a large dataset. MVP Richard Low has a great article on secondary indexes(The Sweet Spot For Cassandra Secondary Indexing), and particularly on this point:
If your table was significantly larger than memory, a query would be very slow even to return just a few thousand results. Returning potentially millions of users would be disastrous even though it would appear to be an efficient query.
...
In practice, this means indexing is most useful for returning tens, maybe hundreds of results. Bear this in mind when you next consider using a secondary index.
Now, your approach of first restricting by a specific partition will help (as your partition should certainly fit into memory). But I feel the better-performing choice here would be to make record_link_id a clustering key, instead of relying on a secondary index.
Edit
How does having index on low cardinality index when there are millions of users scale even when we provide the primary key
It will depend on how wide your rows are. The tricky thing about extremely low cardinality indexes, is that the % of rows returned is usually greater. For instance, consider a wide-row users table. You restrict by the partition key in your query, but there are still 10,000 rows returned. If your index is on something like gender, your query will have to filter-out about half of those rows, which won't perform well.
Secondary indexes tend to work best on (for lack of a better description) "middle of the road" cardinality. Using the above example of a wide-row users table, an index on country or state should perform much better than an index on gender (assuming that most of those users don't all live in the same country or state).
Edit 20180913
For your answer to 1st question "How the above query will work internally in cassandra?", do you know what's the behavior when query with pagination?
Consider the following diagram, taken from the Java Driver documentation (v3.6):
Basically, paging will cause the query to break itself up and return to the cluster for the next iteration of results. It'd be less likely to timeout, but performance will trend downward, proportional to the size of the total result set and the number of nodes in the cluster.
TL;DR; The more requested results spread over more nodes, the longer it will take.
Query with only secondary index is also possible in Cassandra 2.x
select * from update_audit where record_link_id=9897;
But this has a large impact on fetching data, because it reads all partitions on distributed environment. The data fetched by this query is also not consistent and could not relay on it.
Suggestion:
Use of Secondary index is considered to be a DIRT query from NoSQL Data Model view.
To avoid secondary index, we could create a new table and copy data to it. Since this is a query of the application, Tables are derived from queries.
Related
I have a table that stores events
CREATE TABLE active_events (
event_id VARCHAR,
number VARCHAR,
....
start_time TIMESTAMP,
PRIMARY KEY (event_id, number)
);
Now, I want to select an event with the highest start_time. It is possible? I've tried to create a secondary index, but no success.
This is a query I've created
select * from active_call order by start_time limit 1
But the error says ORDER BY is only supported when the partition key is restricted by an EQ or an IN.
Should I create some kind of materialized view? What should I do to execute my query?
This is an anti-pattern in Cassandra. To order the data you need to read all data and find the highest value. And this will require scanning of data on multiple nodes, and will be very long.
Materialized view also won't help much as order for data only exists inside an individual partition, so you will need to put all your data into a single partition that could be huge and data would be imbalanced.
I can only think of following workaround:
Have an additional table that will have all columns of the original table, but with a fake partition key and no clustering columns
You do inserts into that table in parallel to normal inserts, but use a fixed value for that fake partition key, and explicitly setting a timestamp for a record equal to start_time (don't forget to multiple by 1000 as timestamp uses microseconds). In this case it will guaranteed to be the value with the highest timestamp as Cassandra won't override it with other data with lower timestamp.
But this doesn't solve a problem with data skew, and all traffic will be handled by fixed number of nodes equal to RF.
Another alternative - use another database.
This type of query isn't valid in big data because it requires a full table scan and doesn't scale. It works in traditional relational databases because the dataset is smaller. Imagine you had billions of partitions each with thousands of rows spread across hundreds of nodes. A full table scan in a large cluster will take a very long time if it was allowed.
The error:
ORDER BY is only supported when the partition key is restricted by an EQ or an IN
gets returned because you can only sort the results provided (a) the query is restricted to a partition key, and (b) the rows are ordered by a clustering column. You cannot sort the results based on a column that is not part of the clustering key. Cheers!
I read in Cassandra documentation that creating secondary index is less efficient as because in worst case it need to touch all nodes in order to find out the data of that non-key column.
But my doubt is even if we do not create secondary index, then also it will have to touch all nodes (in worst case) and find out where that particular row with this non-key column value resides.
Note: Yeah, I understand that it is possible that if the cardinality is high then the secondary index will contain(store) index for mostly all rows and in this way it is bad in terms of storage. But I want to know how not creating secondary index is efficient than creating secondary index?
Secondary indexes should be used only in specific cases, like, when you use them together with condition on partition key column, you have correct cardinality for data, etc.
For example, if we have following table:
create table test.test (
pk int,
c1 int,
val1 int,
val2 int,
primary key(pk, c1));
and you created a secondary index on the column val2, then following query will be very effective:
select * from test.test where pk = 123 and val2 = 10
because you restricted the execution of query only to the nodes that are replicas for pk with value 123.
But if you do
select * from test.test where val2 = 10
then Cassandra will need to go to the every node, and ask for data there - it will be much slower, and put a pressure to coordinating node.
Standard secondary indexes have other limitations, such as, search only for specific values, problems when column has very low or very high cardinality, etc. SASI indexes are better from design standpoint, although they are still experimental, and have problems with implementation.
You can find technical details about implementation of secondary indexes in the following blog post.
DataStax has other implementations in the commercial offering:
DSE Search that is based on the Apache Solr, so you get a lot of flexibility (full text search, range queries, etc.)
new implementation called SSTable Attached Indexes (SAI) - they are currently marked as beta, but they provide more flexibility than standard secondary indexes, with less overhead than DSE Search
I just begin study cassandra.
It was a table and queries.
CREATE TABLE finance.tickdata(
id_symbol int,
ts timestamp,
bid double,
ask double,
PRIMARY KEY(id_symbol,ts)
);
And query is successful,
select ts,ask,bid
from finance.tickdata
where id_symbol=3
order by ts desc;
Next it was decision move id_symbol in table name, new table(s) scripts.
CREATE TABLE IF NOT EXISTS mts_src.ticks_3(
ts timestamp PRIMARY KEY,
bid double,
ask double
);
And now query fails,
select * from mts_src.ticks_3 order by ts desc
I read from docs, that I need use and filter (WHERE) by primary key (partition key),
but technically my both examples same. Why cassandra so restricted in this aspect?
And one more question, It is good idea in general? move id_symbol in table name -
potentially it can be 1000 of unique id_symbol and a lot of data for each. Separate this data on individual tables look like good idea!? But I lose order by possibility, that is so necessary for me to take fresh data by each symbol_id.
Thanks.
You can't sort on the partition key, you can sort only on clustering columns inside the single partition. So you need to model your data accordingly. But you need to be very careful not to create very large partitions (when using ticker_id as partition key, for example). In this case you may need to create a composite keys, like, ticker_id + year, or month, depending on how often you're inserting the data.
Regarding the table per ticker, that's not very good idea, because every table has overhead, it will lead to increased resource consumption. 200 tables is already high number, and 500 is almost "hard limit"
Pretty new to Cassandra - I have data that looks like this:
<geohash text, category int, payload text>
The only query I want to run is:
SELECT category, payload FROM table WHERE geohash IN (list of 9 geohashes)
What would be the best schema in this case?
I know I could simply make my geohash the primary key and be done with it, but is there a better approach?
What are the benefits for defining PRIMARY KEY (geohash, category, payload)?
It depends on the size of your data for each row (geohash text, category int, payload text). If your payload size does not reach to tens of Mb, then you may want to put more geohash values into the same partition by using an artificial bucketId int, so your query can be performed on a server. Schema would look like this
geohash text, bucketId int, category int, payload text where the partition key is goehash and bucketId.
The recommendation is to have a sizeable partition <= 100 Mb, so you don't have to look up too many partitions. More is available here.
If you have a primary key on (geohash, category, payload), then you can have your data sorted on category and payload in the ascending order.
So based on the query, it sounds like you're considering a CQL schema that looks like this:
CREATE TABLE geohash_data (
geohash text,
category int,
data text,
PRIMARY KEY (geohash)
);
In Cassandra, the first (and in this case only) column in your PRIMARY KEY is the Partition Key. The Partition Key is what's used to distribute data around the cluster. So when you do your SELECT ... IN () query, you're basically querying for the data in 9 different partitions which, depending on how large your cluster is, the replication factor, and the consistency level you use to do the query, could end up querying at least 9 servers (and maybe more). Why does that matter?
Latency: The more partitions (and thus replicas/servers) involved in our query, the more potential for a slow server being able to negatively impact how quickly the data is returned.
Availability: The more partitions (and thus replicas/servers) involved in our query, the more potential that a single server going down could make it impossible for the query to be satisfied at all.
Both of those are bad scenarios so (as Toan rightly points out in his answer and the link he provided), we try to data model in Cassandra so that our queries will hit as few partitions (and thus replicas/servers) as possible. What does that mean for your scenario? Without knowing all the details, it's hard to say for sure, but let me make a couple guesses about your scenario and give you an example of how I'd try to solve it.
It sounds like maybe you already know the list of possible geohash values ahead of time (maybe they're at some regularly spaced interval of a predefined grid). It also sounds like maybe you're querying for 9 geohash values because you're doing some kind of "proximity" search where you're trying to get the data for the 9 geohashes in each direction around a given point.
If that's the case, the trick could be to denormalize the data at write time into a data model optimized for reading. For example, a schema like this:
CREATE TABLE geohash_data (
geohash text,
data_geohash text,
category int,
data text,
PRIMARY KEY (geohash, data_geohash)
);
When you INSERT a data point, you'd calculate the geohashes for the surrounding areas where you expect that data should show up in the results. You'd then INSERT the data multiple times for each geohash you calculated. So the value for geohash is the calculated value where you expect it to show up in the query results and the value for data_geohash is the actual value from the data you're inserting. Thus you'd have multiple (up to 9?) rows in your partition for a given geohash which represent the data of the surrounding geohashes.
This means your SELECT query now doesn't have to do an IN and hit multiple partitions. You just query WHERE geohash = ? for the point you want to search around.
I'm using (the latest version of) Cassandra nosql dbms to model some data.
I'd like to get a count of the number of active customer accounts in the last month.
I've created the following table:
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
So because I want to filter by date, I create an index on the date column:
CREATE INDEX ON active_accounts (date);
When I insert some data, Cassandra automatically updates data on any existing primary key matches, so the following inserts only produce two records:
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer1', 'account1', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377414000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377415000);
This is exactly what I'd like - I won't get a huge table of data, and each entry in the table represents a unique customer account - so no need for a select distinct.
The query I'd like to make - is how many distinct customer accounts are active within the last month say:
Select count(*) from active_accounts where date >= 1418377411000 and date <= 1418397411000 ALLOW FILTERING;
In response to this query, I get the following error:
code=2200 [Invalid query] message="No indexed columns present in by-columns clause with Equal operator"
What am I missing; isn't this the purpose of the Index I created?
Table design in Cassandra is extremely important and it must match the kind of queries that you are trying to preform. The reason that Cassandra is trying to keep you from performing queries on the date column, is that any query along that column will be extremely inefficient.
Table Design - Model your queries
One of the main reasons that Cassandra can be fast is that it partitions user data so that most( 99%)
of queries can be completed without contacting all of the nodes in the cluster. This means less network traffic, less disk access, and faster response time. Unfortunately Cassandra isn't able to determine automatically what the best way to partition data. The end user must determine a schema which fits into the C* datamodel and allows the queries they want at a high speed.
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
This schema will only be efficient for queries that look like
SELECT timestamp FROM active_accounts where customer_name = ? and account_name = ?
This is because on the the cluster the data is actually going to be stored like
node 1: [ ((Bob,1)->Monday), ((Tom,32)->Tuesday)]
node 2: [ ((Candice, 3) -> Friday), ((Sarah,1) -> Monday)]
The PRIMARY KEY for this table says that data should be placed on a node based on the hash of the combination of CustomerName and AccountName. This means we can only look up data quickly if we have both of those pieces of data. Anything outside of that scope becomes a batch job since it requires hitting multiple nodes and filtering over all the data in the table.
To optimize for different queries you need to change the layout of your table or use a distributed analytics framework like Spark or Hadoop.
An example of a different table schema that might work for your purposes would be something like
CREATE TABLE active_accounts
(
start_month timestamp,
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY (start_month, date, customer_name, account_name)
);
In this schema I would put the timestamp of the first day of the month as the partitioning key and date as the first clustering key. This means that multiple account creations that took place in the same month will end up in the same partition and on the same node. The data for a schema like this would look like
node 1: [ (May 1 1999) -> [(May 2 1999, Bob, 1), (May 15 1999,Tom,32)]
This places the account dates in order within each partition making it very fast for doing range slices between particular dates. Unfortunately you would have to add code on the application side to pull down the multiple months that a query might be spanning. This schema takes a lot of (dev) work so if these queries are very infrequent you should use a distributed analytics platform instead.
For more information on this kind of time-series modeling check out:
http://planetcassandra.org/getting-started-with-time-series-data-modeling/
Modeling in general:
http://www.slideshare.net/planetcassandra/cassandra-day-denver-2014-40328174
http://www.slideshare.net/johnny15676/introduction-to-cql-and-data-modeling
Spark and Cassandra:
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
Don't use secondary indexes
Allow filtering was added to the cql syntax to prevent users from accidentally designing queries that will not scale. The secondary indexes are really only for use by those do analytics jobs or those C* users who fully understand the implications. In Cassandra the secondary index lives on every node in your cluster. This means that any query that requires a secondary index necessarily will require contacting every node in the cluster. This will become less and less performant as the cluster grows and is definitely not something you want for a frequent query.