What is the theory behind the Navigational Style in Alloy - alloy

In the Alloy well-know book by Daniel Jakson he writes about three different styles in specifying constraints in Alloy: 1) predicate calculus 2) navigational style, and 3) relational calculus. (Section 3.1, page 34)
The theory behind the first and the last ones are somehow clear to to me as the first is the conventional first order logic when we take relations as predicates; and the last is relational calculus in which everything is taken as a relation and constraints are specified by employing the equation symbol and some algebraic operations (without quantifiers). In the book, it is said that the second one has the most expressive power (page 35).
My Question:
What is the theory behind the second one (i.e., navigational style)? Where should I look for (and under which terminology) to gain more information regarding this one in theory.

The motivation for the navigational style is that you want something between predicate calculus, which has no operations on sets or relations, so is very awkward and verbose to use in practice (and also less expressive due to the lack of transitive closure), and relational calculus, as pioneered by Tarski, which gives you relational operators but has no quantifiers, which is quite unnatural for most people (but which allows some beautifully succinct ways to express properties). The navigational style comes between the two, and gives you both set/relation operators and quantifiers, so in this sense -- informally at least, and probably formally too if you defined the three sublanguages carefully -- it's more expressive than either. At the same time, I had in mind that most people are comfortable with simple first order quantifiers but aren't so comfortable with relational join, and tend therefore to write formulas in which expressions denote sets. You can think of each of these expressions as starting at some atom, denoted by a quantified variable, and then "navigating" along relations to get larger and larger expressions that denote sets of atoms. This is how I think of an expression like me.parents.children : you start with me, navigate to my parents, then from them to their children -- and the result is the set containing me and my siblings. In my experience, this navigational style is what most people gravitate naturally towards.
It's true that if you had to pick one style of the three that matched OCL, it would be this navigational style, although it's true that OCL has a very much more complex semantics (due to various coercions and flattenings that happen automatically at each step), where in Alloy the semantics is just standard sets and relations. The syntax is probably more influenced by object oriented languages like Java, even though they don't have the kind of relational image that Alloy has (that is, if you have a field f and can write x.f, you can't write xs.f for the set of all objects that are mapped to by f from the objects in the set xs!). Note however that there is no special syntax here; these are just styles of usage of the same operators.
When I wrote this page in the book, I thought it would give readers some useful intuitions, but it seems to have just caused more confusion!

In Appendix E - Alternative Approaches, Daniel Jackson discusses OCL, which has a navigational style. I would assume he borrowed the syntax from it, as he discusses it as related work that precedes Alloy.

Related

What are algebraic structures in functional programming?

I've been doing some light reading on functional programming concepts and ideas. So far, so good, I've read about three main concepts: algebraic structures, type classes, and algebraic data types. I have a fairly good understanding of what algebraic data types are. I think sum types and product types are fairly straightforward. For example, I can imagine creating an algebraic data type like a Card type which is a product type consisting of two enum types, Suit (with four values and symbols) and Rank (with 13 values and symbols).
However, I'm still hung up on trying to understand precisely what algebraic structures and type classes are. I just have a surface-level picture in my head but can't quite completely wrap my head around, for instance, the different types of algebraic structures like functors, monoids, monads, etc. How exactly are these different? How can they be used in a programming setting? How are type classes different from regular classes? Can anyone at least point me in the direction of a good book on abstract algebra and functional programming? Someone recommended I learn Haskell but do I really need to learn Haskell in order to understand functional programming?
"algebraic structure" is a concept that goes well beyond programming, it belongs to mathematics.
Imagine the unfathomably deep sea of all possible mathematical objects. Numbers of every stripe (the naturals, the reals, p-adic numbers...) are there, but also things like sequences of letters, graphs, trees, symmetries of geometrical figures, and all well-defined transformations and mappings between them. And much else.
We can try to "throw a net" into this sea and retain only some of those entities, by specifying conditions. Like "collections of things, for which there is an operation that combines two of those things into a third thing of the same type, and for which the operation is associative". We can give those conditions their own name, like, say, "semigroup". (Because we are talking about highly abstract stuff, choosing a descriptive name is difficult.)
That leaves out many inhabitants of the mathematical "sea", but the description still fits a lot of them! Many collections of things are semigroups. The natural numbers with the multiplication operation for example, but also non-empty lists of letters with concatenation, or the symmetries of a square with composition.
You can expand your description with extra conditions. Like "a semigroup, and there's also an element such that combining it with any other element gives the other element, unchanged". That restricts the number of mathematical entities that fit the description, because you are demanding more of them. Some valid semigroups will lack that "neutral element". But a lot of mathematical entities will still satisfy the expanded description. If you aren't careful, you can declare conditions so restrictive that no possible mathematical entity can actually fit them! At other times, you can be so precise that only one entity fits them.
Working purely with these descriptions of mathematical entities, using only the general properties we require of them, we can obtain unexpected results about them, non-obvious at first sight, results that will apply to all entities which fit the description. Think of these discoveries as the mathematical equivalent of "code reuse". For example, if we know that some collection of things is a semigroup, then we can calculate exponentials using binary exponentiation instead of tediously combining a thing with itself n times. But that only works because of the associative property of the semigroup operation.
You’ve asked quite a few questions here, but I can try to answer them as best I can:
… different types of algebraic structures like functors, monoids, monads, etc. How exactly are these different? How can they be used in a programming setting?
This is a very common question when learning Haskell. I won’t write yet another answer here — and a complete answer is fairly long anyway — but a simple Google search gives some very good answers: e.g. I can recommend 1 2 3
How are type classes different from regular classes?
(By ‘regular classes’ I assume you mean classes as found in OOP.)
This is another common question. Basically, the two have almost nothing in common except the name. A class in OOP is a combination of fields and methods. Classes are used by creating instances of that class; each instance can store data in its fields, and manipulate that data using its methods.
By contrast, a type class is simply a collection of functions (often also called methods, though there’s pretty much no connection). You can declare an instance of a type class for a data type (again, no connection) by redefining each method of the class for that type, after which you may use the methods with that type. For instance, the Eq class looks like this:
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
And you can define an instance of that class for, say, Bool, by implementing each function:
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
p /= q = not (p == q)
Can anyone at least point me in the direction of a good book on abstract algebra and functional programming?
I must admit that I can’t help with this (and it’s off-topic for Stack Overflow anyway).
Someone recommended I learn Haskell but do I really need to learn Haskell in order to understand functional programming?
No, you don’t — you can learn functional programming from any functional language, including Lisp (particularly Scheme dialects), OCaml, F#, Elm, Scala etc. Haskell happens to be a particularly ‘pure’ functional programming language, and I would recommend it as well, but if you just want to learn and understand functional programming then any one of those will do.

Type classes with laws that contain not equalities/symmetries but inequalities/asymmetries

All of the type classes that I've come across, I think have had laws that establish symmetries by specifying equations. I was wondering though if there are any prominent theoretical or even practical examples of type classes that establish asymmetries, i.e. ones that demand the lack of symmetry? By e.g. specifying <expr1> /= <expr2> or <, or not somePredicate(a, b).
I understand that inequality can be expressed as an equality with a free variable, i.e. a > b = a + k = b etc, but I'm thinking the introduction of free variables itself might align with my idea of enforced asymmetry.
What would be the (theoretical) applications of such law? And are there any (runnable) examples of this?
Alternatively: if this can't be considered Haskell enough to be on SO, should this go on CS or CSTheory?
Algebraic laws in general typically are only specified in terms of equational identities, and not not disequalities. The standpoint to think about this is model theory. A theory can be thought of as 1) a collection of symbols, of different arities, so that sentences can be constructed from them (i.e. of arity 0 we might have sequences of numerals, of arity 1 we have negation, and of arity two we have addition) and 2) a set of equations that provide relations between sentences constructed from such signatures.
This lets us describe things like various arithmetic theories, groups, rings, modules, etc.
Now a model of a theory is a set of concrete assignments of mathematical objects (numbers, functions, etc) to the elements of the signature, such that the translation of sentences into the elements of the model respects these equations.
Categorically, we often think of a theory as a special sort of category of all possible sentences generated by the signature. The arrows in this category are implication -- sentences which may be generated from others by application of the equational identities. This in turn induces equivalences between all sentences which are the same under the application of the equational identities (this yields the "generators and relations" approach). And in turn, a model is simply a functor from this theory to any other category, though typically Set.
This yields a very nice adjunction between syntax and semantics. The greater the collection of sentences you want to model, the fewer the models you can get, and the more models you have, the smaller the set of sentences that will be satisfied by all of them. (Here I am only sketching the idea rather than filling in lots of important details).
In any case, one consequence of this that people tend to ignore, but that really pays off, is that in such a setting you want a "terminal model" that is the least among all models, just as you want an "initial theory" that admits all models. The terminal (aka trivial) model is the functor that sends everything in the theory to the empty set and maps on the empty set. Lots of very nice properties emerge when you have such things. But note -- to have such things, you must only have equational identities and not "disidentities." Such theories are called Algebraic Theories.
What does this all have to do with Haskell? Well, we can think of the signatures of typeclasses exactly as signatures of algebraic theories, and the laws of them as the equations of such theories. And that's generally how typeclasses are used in Haskell and why they were introduced -- to suit these sorts of situations.
But of course we don't have to do this -- we can have whatever laws we want. But we lose all sorts of nice properties along the way -- and often in fact find that disequalities mean our theory will have very few models, and with weird structure relating them. Since typeclasses are intended to capture common structure between various things, and since non-algebraic theories tend to fix unique(ish) models, then it turns out it is rarely the case that we would want to use disequality relations in typeclass laws. And indeed I can't think of any examples where I've seen it come up.
Here's another way to think of it -- consider a theory with equalities and disequalities both, and then eliminate the disequalities. What remains still admits all the prior models, but also may have a bunch of "unintended" ones. So we don't gain additional reasoning in terms of rewrites -- we just have certain models that are a priori excluded. Furthermore, when one wishes to rule out "unintended" models this is usually because we want to fix a particular "intended" one. And if we want to fix a particular intended model, the question immediately arises -- why not just use that concrete structure, instead of the more general typeclass?

What is the practical use for laziness as a built-in language feature?

It's fairly obvious why a functional programming language that wants to be lazy needs to be pure. I'm looking at the reverse question: if a language wants to be pure, is there a big advantage in being lazy? One argument, made by one of the designers of Haskell, is that it removes temptation; maybe, but I'm trying to weigh up the more concrete advantages.
Given that you want to do functional programming, what are the use cases where built-in laziness lets you express things more clearly, simply or concisely?
Stated simply: Why is laziness so important that you'd want to build it into the language?
(I'm looking for use cases more oriented towards an application rather than a demo - I know you can do things like producing an infinite list of prime numbers by filtering an infinite list of natural numbers, but who writes that ten times 'fore lunch...)
"Nothing is evaluated until it is needed at another place" is a simplified metaphor which doesn't cover all aspects of lazy evaluation (e.g. it doesn't mention the strictness phenomena).
From theoretical standpoint, there are 3 ways to go when designing a pure language (of course if it's based on some kind of lambda calculus and not on more exotic evaluation models): strict, non-strict and total.
Each of them has its advantages and disadvantages, so you need to read corresponding research papers.
Total languages are most pure of the three. In the other two the non-termination can be seen as a side effect, so strictness and totality analysers must be built to keep an implementation efficient. Both analyses are undecidable, so the analyzers can never be complete.
However, the total languages are least expressive: it's impossible for a total language to be Turing complete. A frequent approach to get good enough expressiveness is to have a built-in proof system for well-founded recursion, which is not much easier to build than the analyzers for non-total languages.
From practical standpoint, non-strict semantics lets you more easily define control abstractions, as control structures are essentially non-strict. In a strict language you still need some places with non-strict semantics. E.g. if construct has non-strict semantic even in strict languages.
So if your language is strict, control structures are a special case. In contrast, a non-strict language can be uniformly non-strict - it doesn't have an inherent need in strict constructs.
As for "who writes that ten times 'fore lunch" - anyone who uses Haskell for their projects does. I think developing a non-toy project using a language (a non-strict language in your case) is a best way to grasp its advantages and disadvantages.
Below are a few generic usecases for laziness illustrated by non-toy examples:
Cases when control flow is hard to predict. Think of attribute grammars when without laziness you have to perform a topological sort on attributes to resolve the dependensies. Re-sorting your code every time the dependency graph is changed is not practical. In Haskell you can implement the attribute grammar formalism without an explicit sorting, and there are at least two actual implementations on Hackage. The attribute grammars have wide application in compiler construction.
The "generate and search" approach to solve many optimizaton problems. In a strict language you have to interleave generation and search, in Haskell you just compose separate generation and searching functions, and your code remains syntactically modular, but interleaved at runtime. Think of the traveling salesman problem (TSP), when you generate all possible tours and then search through them using a branch-and-bound algorithm. Note that branch an bound algorithms only inspects certain first cities of a tour, only the necessary parts of routes are generated. The TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing.
Lazy code has non-modular control flow, so a single function can have many possible control flows depending on the environment it executes in. This phenomena can be seen as some kind of 'control flow polymorphism', so lazy control flow abstractions are more generic than their strict counterparts, and a standard library of higher-order functions is much more useful in a lazy language. Think of Python generators, loops and list iterators: in Haskell list functions cover all three usecases, with control flow adapting to different usage scenarios because of laziness. It is not limited to lists - think of Data.Arrow and iteratees, lazy and strict versions of State monad etc. Also note that non-modular control flow is both an advantage and disadvantage, as it makes reasoning about performance harder.
Lazy possibly infinite data structures are useful beyond toy examples. See works of Conal Elliott on memoizing higher order functions using tries. Infinite data structures appear as infinite search spaces (see 2), infinite loops and never-exhausting generators in Python sense (see 3).
Mac OS X's Core Image is a good practical example of lazy evaluation.
Basically, Core Image lets you create a directed acyclic graph of image generators and filters. No evaluation actually takes place until the last step in the process: materialization. When you request to materialize a Core Image graph, the final image frame is propagated backwards through the graph's transformations, thus minimizing the quantity of actual pixel values that need to be evaluated.
There's an extensive discussion of this point in Hughes's classic Why Functional Programming Matters. Therein, Hughes argues that laziness allows for improved modularity, using a number of accessible examples.

Does functional programming mandate new naming conventions?

I recently started studying functional programming using Haskell and came upon this article on the official Haskell wiki: How to read Haskell.
The article claims that short variable names such as x, xs, and f are fitting for Haskell code, because of conciseness and abstraction. In essence, it claims that functional programming is such a distinct paradigm that the naming conventions from other paradigms don't apply.
What are your thoughts on this?
In a functional programming paradigm, people usually construct abstractions not only top-down, but also bottom-up. That means you basically enhance the host language. In this kind of situations I see terse naming as appropriate. The Haskell language is already terse and expressive, so you should be kind of used to it.
However, when trying to model a certain domain, I don't believe succinct names are good, even when the function bodies are small. Domain knowledge should reflect in naming.
Just my opinion.
In response to your comment
I'll take two code snippets from Real World Haskell, both from chapter 3.
In the section named "A more controlled approach", the authors present a function that returns the second element of a list. Their final version is this:
tidySecond :: [a] -> Maybe a
tidySecond (_:x:_) = Just x
tidySecond _ = Nothing
The function is generic enough, due to the type parameter a and the fact we're acting on a built in type, so that we don't really care what the second element actually is. I believe x is enough in this case. Just like in a little mathematical equation.
On the other hand, in the section named "Introducing local variables", they're writing an example function that tries to model a small piece of the banking domain:
lend amount balance = let reserve = 100
newBalance = balance - amount
in if balance < reserve
then Nothing
else Just newBalance
Using short variable name here is certainly not recommended. We actually do care what those amounts represent.
I think if the semantics of the arguments are clear within the context of the code then you can get away with short variable names. I often use these in C# lambdas for the same reason. However if it is ambiguous, you should be more explicit with naming.
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
To someone who hasn't had any exposure to Haskell, that might seem like ugly, unmaintainable code. But most Haskell programmers will understand this right away. So it gets the job done.
var list = new int[] { 1, 2, 3, 4, 5 };
int countEven = list.Count(n => n % 2 == 0)
In that case, short variable name seems appropriate.
list.Aggregate(0, (total, value) => total += value);
But in this case it seems more appropriate to name the variables, because it isn't immediately apparent what the Aggregate is doing.
Basically, I believe not to worry too much about convention unless it's absolutely necessary to keep people from screwing up. If you have any choice in the matter, use what makes sense in the context (language, team, block of code) you are working, and will be understandable by someone else reading it hours, weeks or years later. Anything else is just time-wasting OCD.
I think scoping is the #1 reason for this. In imperative languages, dynamic variables, especially global ones need to be named properly, as they're used in several functions. With lexical scoping, it's clear what the symbol is bound to at compile time.
Immutability also contributes to this to some extent- in traditional languages like C/ C++/ Java, a variable can represent different data at different points in time. Therefore, it needs to be given a name to give the programmer an idea of its functionality.
Personally, I feel that features features like first-class functions make symbol names pretty redundant. In traditional languages, it's easier to relate to a symbol; based on its usage, we can tell if it's data or a function.
I'm studying Haskell now, but I don't feel that its naming conventions is so very different. Of course, in Java you're hardly to find a names like xs. But it is easy to find names like x in some mathematical functions, i, j for counters etc. I consider such names to be perfectly appropriate in right context. xs in Haskell is appropriate only generic functions over lists. There's a lot of them in Haskell, so this name is wide-spread. Java doesn't provide easy way to handle such a generic abstractions, that's why names for lists (and lists themselves) are usually much more specific, e.g. lists or users.
I just attended a number of talks on Haskell with lots of code samples. As longs as the code dealt with x, i and f the naming didn't bother me. However, as soon as we got into heavy duty list manipulation and the like I found the three letters or so names to be a lot less readable than I prefer.
To be fair a significant part of the naming followed a set of conventions, so I assume that once you get into the lingo it will be a little easier.
Fortunately, nothing prevents us from using meaningful names, but I don't agree that the language itself somehow makes three letter identifiers meaningful to the majority of people.
When in Rome, do as the Romans do
(Or as they say in my town: "Donde fueres, haz lo que vieres")
Anything that aids readability is a good thing - meaningful names are therefore a good thing in any language.
I use short variable names in many languages but they're reserved for things that aren't important in the overall meaning of the code or where the meaning is clear in the context.
I'd be careful how far I took the advice about Haskell names
My Haskell practice is only of mediocre level, thus, I dare to try to reply only the second, more general part of Your question:
"In essence, it claims that functional programming is such a distinct paradigm that the naming conventions from other paradigms don't apply."
I suspect, the answer is "yes", but my motivation behind this opinion is restricted only on experience in just one single functional language. Still, it may be interesting, because this is an extremely minimalistic one, thus, theoretically very "pure", and underlying a lot of practical functional languages.
I was curios how easy it is to write practical programs on such an "extremely" minimalistic functional programming language like combinatory logic.
Of course, functional programming languages lack mutable variables, but combinatory logic "goes further one step more" and it lacks even formal parameters. It lacks any syntactic sugar, it lacks any predefined datatypes, even booleans or numbers. Everything must be mimicked by combinators, and traced back to the applications of just two basic combinators.
Despite of such extreme minimalism, there are still practical methods for "programming" combinatory logic in a neat and pleasant way. I have written a quine in it in a modular and reusable way, and it would not be nasty even to bootstrap a self-interpreter on it.
For summary, I felt the following features in using this extremely minimalistic functional programming language:
There is a need to invent a lot of auxiliary functions. In Haskell, there is a lot of syntactic sugar (pattern matching, formal parameters). You can write quite complicated functions in few lines. But in combinatory logic, a task that could be expressed in Haskell by a single function, must be replaced with well-chosen auxiliary functions. The burden of replacing Haskell syntactic sugar is taken by cleverly chosen auxiliary functions in combinatory logic. As for replying Your original question: it is worth of inventing meaningful and catchy names for these legions of auxiliary functions, because they can be quite powerful and reusable in many further contexts, sometimes in an unexpected way.
Moreover, a programmer of combinatory logic is not only forced to find catchy names of a bunch of cleverly chosen auxiliary functions, but even more, he is forced to (re)invent whole new theories. For example, for mimicking lists, the programmer is forced to mimick them with their fold functions, basically, he has to (re)invent catamorphisms, deep algebraic and category theory concepts.
I conjecture, several differences can be traced back to the fact that functional languages have a powerful "glue".
In Haskell, meaning is conveyed less with variable names than with types. Being purely functional has the advantage of being able to ask for the type of any expression, regardless of context.
I agree with a lot of the points made here about argument naming but a quick 'find on page' shows that no one has mentioned Tacit programming (aka pointfree / pointless). Whether this is easier to read may be debatable so it's up to you & your team, but definitely worth a thorough consideration.
No named arguments = No argument naming conventions.

Is there a visual modeling language or style for the functional programming paradigm?

UML is a standard aimed at the modeling of software which will be written in OO languages, and goes hand in hand with Java. Still, could it possibly be used to model software meant to be written in the functional programming paradigm? Which diagrams would be rendered useful given the embedded visual elements?
Is there a modeling language aimed at functional programming, more specifically Haskell? What tools for putting together diagrams would you recommend?
Edited by OP Sept 02, 2009:
What I'm looking for is the most visual, lightest representation of what goes on in the code. Easy to follow diagrams, visual models not necessarily aimed at other programmers. I'll be developing a game in Haskell very soon but because this project is for my graduation conclusion work I need to introduce some sort of formalization of the proposed solution. I was wondering if there is an equivalent to the UML+Java standard, but for Haskell.
Should I just stick to storyboards, written descriptions, non-formalized diagrams (some shallow flow-chart-like images), non-formalized use case descriptions?
Edited by jcolebrand June 21, 2012:
Note that the asker originally wanted a visual metphor, and now that we've had three years, we're looking for more/better tools. None of the original answers really addressed the concept of "visual metaphor design tool" so ... that's what the new bounty is looking to provide for.
I believe the modeling language for Haskell is called "math". It's often taught in schools.
Yes, there are widely used modeling/specification languages/techniques for Haskell.
They're not visual.
In Haskell, types give a partial specification.
Sometimes, this specification fully determines the meaning/outcome while leaving various implementation choices.
Going beyond Haskell to languages with dependent types, as in Agda & Coq (among others), types are much more often useful as a complete specification.
Where types aren't enough, add formal specifications, which often take a simple functional form.
(Hence, I believe, the answers that the modeling language of choice for Haskell is Haskell itself or "math".)
In such a form, you give a functional definition that is optimized for clarity and simplicity and not all for efficiency.
The definition might even involve uncomputable operations such as function equality over infinite domains.
Then, step by step, you transform the specification into the form of an efficiently computable functional program.
Every step preserves the semantics (denotation), and so the final form ("implementation") is guaranteed to be semantically equivalent to the original form ("specification").
You'll see this process referred to by various names, including "program transformation", "program derivation", and "program calculation".
The steps in a typical derivation are mostly applications of "equational reasoning", augmented with a few applications of mathematical induction (and co-induction).
Being able to perform such simple and useful reasoning was a primary motivation for functional programming languages in the first place, and they owe their validity to the "denotative" nature of "genuinely functional programming".
(The terms "denotative" and "genuinely functional" are from Peter Landin's seminal paper The Next 700 Programming languages.)
Thus the rallying cry for pure functional programming used to be "good for equational reasoning", though I don't hear that description nearly as often these days.
In Haskell, denotative corresponds to types other than IO and types that rely on IO (such as STM).
While the denotative/non-IO types are good for correct equational reasoning, the IO/non-denotative types are designed to be bad for incorrect equational reasoning.
A specific version of derivation-from-specification that I use as often as possible in my Haskell work is what I call "semantic type class morphisms" (TCMs).
The idea there is to give a semantics/interpretation for a data type, and then use the TCM principle to determine (often uniquely) the meaning of most or all of the type's functionality via type class instances.
For instance, I say that the meaning of an Image type is as a function from 2D space.
The TCM principle then tells me the meaning of the Monoid, Functor, Applicative, Monad, Contrafunctor, and Comonad instances, as corresponding to those instances for functions.
That's a lot of useful functionality on images with very succinct and compelling specifications!
(The specification is the semantic function plus a list of standard type classes for which the semantic TCM principle must hold.)
And yet I have tremendous freedom of how to represent images, and the semantic TCM principle eliminates abstraction leaks.
If you're curious to see some examples of this principle in action, check out the paper Denotational design with type class morphisms.
We use theorem provers to do formal modelling (with verification), such as Isabelle or Coq. Sometimes we use domain specific languages (e.g. Cryptol) to do the high level design, before deriving the "low level" Haskell implementation.
Often we just use Haskell as the modelling language, and derive the actual implementation via rewriting.
QuickCheck properties also play a part in the design document, along with type and module decompositions.
Yes, Haskell.
I get the impression that programmers using functional languages don't feel the need to simplify their language of choice away when thinking about their design, which is one (rather glib) way of viewing what UML does for you.
I have watched a few video interviews, and read some interviews, with the likes of erik meijer and simon peyton-jones. It seems as when it comes to modelling and understanding ones problem domain, they use type signatures, especially function signatures.
Sequence diagrams (UML) could be related to the composition of functions.
A static class diagram (UML) could be related to type signatures.
In Haskell, you model by types.
Just begin with writing your function-, class- and data signatures without any implementation and try to make the types fit. Next step is QuickCheck.
E.g. to model a sort:
class Ord a where
compare :: a -> a -> Ordering
sort :: Ord a => [a] -> [a]
sort = undefined
then tests
prop_preservesLength l = (length l) == (length $ sort l)
...
and finally the implementation ...
Although not a recommendation to use (as it appears to be not available for download), but the HOPS system visualizes term graphs, which are often a convenient representation of functional programs.
It may be also considered a design tool as it supports documenting the programs as well as constructing them; I believe it can also step through the rewriting of the terms if you want it to so you can see them unfold.
Unfortunately, I believe it is no longer actively developed though.
I realize I'm late to the party, but I'll still give my answer in case someone would find it useful.
I think I'd go for systemic methodologies of the likes of SADT/IDEF0.
https://en.wikipedia.org/wiki/Function_model
https://en.wikipedia.org/wiki/Structured_Analysis_and_Design_Technique
Such diagrams can be made with the Dia program that is available on both Linux, Windows and MacOS.
You can a data flow process network model as described in Realtime Signal Processing: Dataflow, Visual, and Functional Programming by Hideki John Reekie
For example for code like (Haskell):
fact n | n == 0 = 1
| otherwise = n * fact (n - 1)
The visual representation would be:
What would be the point in modelling Haskell with Maths? I thought the whole point of Haskell was that it related so closely to Maths that Mathematicians could pick it up and run with it. Why would you translate a language into itself?
When working with another functional programming language (f#) I used diagrams on a white board describing the large blocks and then modelled the system in an OO way using UML, using classes. There was a slight miss match in the building blocks in f# (split the classes up into data structures and functions that acted upon them). But for the understanding from a business perspective it worked a treat. I would add mind that the problem was business/Web oriented and don't know how well the technique would work for something a bit more financial. I think I would probably capture the functions as objects without state and they should fit in nicely.
It all depends on the domain your working in.
I use USL - Universal Systems Language. I'm learning Erlang and I think it's a perfect fit.
Too bad the documentation is very limited and nobody uses it.
More information here.

Resources