IBM Cognos- difference between burst key, burst group - cognos

I'm new to bursting in cognos and would like to know what the difference between a burst key and burst group is.

The words are used interchangeably. There is no real difference.

Related

Azure CosmosDB pricing - how many RTs

Is there a way to calculate how many RUs I would need if the a documentdb database is expected to have roughly 800 writes a second and 1500 reads a second?
Each read is a simple retrieve based on the index, and each item will have about 15 small data fields (a few bools, short strings, and short doubles).
Each write will be an update of most of the data values for the record.
The documentations states 1 RU = 1kb GET, well each GET in this instance should be less than 1kb I would suspect so the reads would be about 1500 RU/s but I have no idea how to calculate the writes; any help would be greatly appreciated.
There's a simple to use capacity planning tool available online. You can simply upload a sample JSON document and then specify how many reads and writes per second you expect and it will estimate your required RU/s throughput.
As David so eloquently pointed out, this should only be used as a starting point to give you a ballpark of what your minimum RU cost might be. If your primary read pattern was simply retrieving documents directly by their Id then it might be relatively accurate. In reality, RU is calculated based on the complexity of your queries. So once you have your baseline it's important to do proper analysis of your query patterns and get a feel for their RU cost.
Luckily, the ease and speed with which you can scale Cosmos in response to load is one of it's most compelling features in my opinion. In my experience, adding or removing RU throughput is done within a matter of seconds so you can definitely add a layer of intelligent database tuning within your application to optimize your cost and usage.

KairosDB: is it a good idea to create many metrics?

I plan to use KairosDB to store monitoring data for my VMs' disk IO. Now I am thinking that I should create a metric for every VM, which will lead to many metrics in the DB, or just create a metric for all VMs and use tags to identify data for each VM.
I am not sure if a large number of metrics will kill the performance or hurt query.
Any suggestions?
Same comment as Sergei.
To answer your other question having many metrics will not impact the performances.
But having metrics with very high tag cardinality must be avoided, but in your case you should not have to (by high cardinality I mean non discrete values, or thousands of values).

Azure Table Storage Partition Key

Two somewhat related questions.
1) Is there anyway to get an ID of the server a table entity lives on?
2) Will using a GUID give me the best partition key distribution possible? If not, what will?
we have been struggling for weeks on table storage performance. In short, it's really bad, but early on we realized that using a randomish partition key will distribute the entities across many servers, which is exactly what we want to do as we are trying to achieve 8000 reads per second. Apparently our partition key wasn't random enough, so for testing purposes, I have decided to just use a GUID. First impression is it is waaaaaay faster.
Really bad get performance is < 1000 per second. Partition key is Guid.NewGuid() and row key is the constant "UserInfo". Get is execute using TableOperation with pk and rk, nothing else as follows: TableOperation retrieveOperation = TableOperation.Retrieve(pk, rk); return cloudTable.ExecuteAsync(retrieveOperation). We always use indexed reads and never table scans. Also, VM size is medium or large, never anything smaller. Parallel no, async yes
As other users have pointed out, Azure Tables are strictly controlled by the runtime and thus you cannot control / check which specific storage nodes are handling your requests. Furthermore, any given partition is served by a single server, that is, entities belonging to the same partition cannot be split between several storage nodes (see HERE)
In Windows Azure table, the PartitionKey property is used as the partition key. All entities with same PartitionKey value are clustered together and they are served from a single server node. This allows the user to control entity locality by setting the PartitionKey values, and perform Entity Group Transactions over entities in that same partition.
You mention that you are targeting 8000 requests per second? If that is the case, you might be hitting a threshold that requires very good table/partitionkey design. Please see the article "Windows Azure Storage Abstractions and their Scalability Targets"
The following extract is applicable to your situation:
This will provide the following scalability targets for a single storage account created after June 7th 2012.
Capacity – Up to 200 TBs
Transactions – Up to 20,000 entities/messages/blobs per second
As other users pointed out, if your PartitionKey numbering follows an incremental pattern, the Azure runtime will recognize this and group some of your partitions within the same storage node.
Furthermore, if I understood your question correctly, you are currently assigning partition keys via GUID's? If that is the case, this means that every PartitionKey in your table will be unique, thus every partitionkey will have no more than 1 entity. As per the articles above, the way Azure table scales out is by grouping entities in their partition keys inside independent storage nodes. If your partitionkeys are unique and thus contain no more than one entity, this means that Azure table will scale out only one entity at a time! Now, we know Azure is not that dumb, and it groups partitionkeys when it detects a pattern in the way they are created. So if you are hitting this trigger in Azure and Azure is grouping your partitionkeys, it means your scalability capabilities are limited to the smartness of this grouping algorithm.
As per the the scalability targets above for 2012, each partitionkey should be able to give you 2,000 transactions per second. Theoretically, you should need no more than 4 partition keys in this case (assuming that the workload between the four is distributed equally).
I would suggest you to design your partition keys to group entities in such a way that no more than 2,000 entities per second per partition are reached, and drop using GUID's as partitionkeys. This will allow you to better support features such as Entity Transaction Group, reduce the complexity of your table design, and get the performance you are looking for.
Answering #1: There is no concept of a server that a particular table entity lives on. There are no particular servers to choose from, as Table Storage is a massive-scale multi-tenant storage system. So... there's no way to retrieve a server ID for a given table entity.
Answering #2: Choose a partition key that makes sense to your application. just remember that it's partition+row to access a given entity. If you do that, you'll have a fast, direct read. If you attempt to do a table- or partition-scan, your performance will certainly take a hit.
See
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/06/how-to-get-most-out-of-windows-azure-tables.aspx for more info on key selection (Note the numbers are 3 years old, but the guidance is still good).
Also this talk can be of some use as far as best practice : http://channel9.msdn.com/Events/TechEd/NorthAmerica/2013/WAD-B406#fbid=lCN9J5QiTDF.
In general a given partition can support up to 2000 tps, so spreading data across partitions will help achieve greater numbers. Something to consider is that atomic batch transactions only apply to entities that share the same partitionkey. Additionally, for smaller requests you may consider disabling Nagle as small requests may be getting held up at the client layer.
From the client end, I would recommend using the latest client lib (2.1) and Async methods as you have literally thousands of requests per second. (the talk has a few slides on client best practices)
Lastly, the next release of storage will support JSON and JSON no metadata which will dramatically reduce the size of the response body for the same objects, and subsequently the cpu cycles needed to parse them. If you use the latest client libs your application will be able to leverage these behaviors with little to no code change.

Design of Partitioning for Azure Table Storage

I have some software which collects data over a large period of time, approx 200 readings per second. It uses an SQL database for this. I am looking to use Azure to move a lot of my old "archived" data to.
The software uses a multi-tenant type architecture, so I am planning to use one Azure Table per Tenant. Each tenant is perhaps monitoring 10-20 different metrics, so I am planning to use the Metric ID (int) as the Partition Key.
Since each metric will only have one reading per minute (max), I am planning to use DateTime.Ticks.ToString("d19") as my RowKey.
I am lacking a little understanding as to how this will scale however; so was hoping somebody might be able to clear this up:
For performance Azure will/might split my table by partitionkey in order to keep things nice and quick. This would result in one partition per metric in this case.
However, my rowkey could potentially represent data over approx 5 years, so I estimate approx 2.5 million rows.
Is Azure clever enough to then split based on rowkey as well, or am I designing in a future bottleneck? I know normally not to prematurely optimise, but with something like Azure that doesn't seem as sensible as normal!
Looking for an Azure expert to let me know if I am on the right line or whether I should be partitioning my data into more tables too.
Few comments:
Apart from storing the data, you may also want to look into how you would want to retrieve the data as that may change your design considerably. Some of the questions you might want to ask yourself:
When I retrieve the data, will I always be retrieving the data for a particular metric and for a date/time range?
Or I need to retrieve the data for all metrics for a particular date/time range? If this is the case then you're looking at full table scan. Obviously you could avoid this by doing multiple queries (one query / PartitionKey)
Do I need to see the most latest results first or I don't really care. If it's former, then your RowKey strategy should be something like (DateTime.MaxValue.Ticks - DateTime.UtcNow.Ticks).ToString("d19").
Also since PartitionKey is a string value, you may want to convert int value to a string value with some "0" prepadding so that all your ids appear in order otherwise you'll get 1, 10, 11, .., 19, 2, ...etc.
To the best of my knowledge, Windows Azure partitions the data based on PartitionKey only and not the RowKey. Within a Partition, RowKey serves as unique key. Windows Azure will try and keep data with the same PartitionKey in the same node but since each node is a physical device (and thus has size limitation), the data may flow to another node as well.
You may want to read this blog post from Windows Azure Storage Team: http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/06/how-to-get-most-out-of-windows-azure-tables.aspx.
UPDATE
Based on your comments below and some information from above, let's try and do some math. This is based on the latest scalability targets published here: http://blogs.msdn.com/b/windowsazurestorage/archive/2012/11/04/windows-azure-s-flat-network-storage-and-2012-scalability-targets.aspx. The documentation states that:
Single Table Partition– a table partition are all of the entities in a
table with the same partition key value, and usually tables have many
partitions. The throughput target for a single table partition is:
Up to 2,000 entities per second
Note, this is for a single partition, and not a single table. Therefore, a table with good partitioning, can process up to the
20,000 entities/second, which is the overall account target described
above.
Now you mentioned that you've 10 - 20 different metric points and for for each metric point you'll write a maximum of 1 record per minute that means you would be writing a maximum of 20 entities / minute / table which is well under the scalability target of 2000 entities / second.
Now the question remains of reading. Assuming a user would read a maximum of 24 hours worth of data (i.e. 24 * 60 = 1440 points) per partition. Now assuming that the user gets the data for all 20 metrics for 1 day, then each user (thus each table) will fetch a maximum 28,800 data points. The question that is left for you I guess is how many requests like this you can get per second to meet that threshold. If you could somehow extrapolate this information, I think you can reach some conclusion about the scalability of your architecture.
I would also recommend watching this video as well: http://channel9.msdn.com/Events/Build/2012/4-004.
Hope this helps.

Azure Table Storage - How fast can I table scan?

Everyone warns not to query against anything other than RowKey or PartitionKey in Azure Table Storage (ATS), lest you be forced to table scan. For a while, this has paralyzed me into trying to come up with exactly the right PK and RK and creating pseudo-secondary indexes in other tables when I needed to query something else.
However, it occurs to me that I would commonly table scan in SQL Server when I thought appropriate.
So the question becomes, how fast can I table scan an Azure Table. Is this a constant in entities/second or does it depend on record size, etc. Are there some rules of thumb as to how many records is too many to table scan if you want a responsive application?
The issue of a table scan has to do with crossing the partition boundaries. The level of performance you are guaranteed is explicity set at the partition level. therefore, when you run a full table scan, its a) not very efficient, b) doesn't have any guarantee of performance. This is because the partitions themselves are set on seperate storage nodes, and when you run a cross partition scan, you're consuming potentially massive amounts of resources (tieing up multiple nodes simultaneously).
I believe, that the effect of crossing these boundaries also results in continuation tokens, which require additional round-trips to storage to retrieve the results. This results then in reducing performance, as well as an increase in transaction counts (and subsequently cost).
If the number of partitions/nodes you're crossing is fairly small, you likely won't notice any issues.
But please don't quote me on this. I'm not an expert on Azure Storage. Its actually the area of Azure I'm the least knowledgeable about. :P
I think Brent is 100% on the money, but if you still feel you want to try it, I can only suggest to run some tests to find out yourself. Try include the partitionKey in your queries to prevent crossing partitions because at the end of the day that's the performance killer.
Azure tables are not optimized for table scans. Scanning the table might be acceptable for a long-running background job, but I wouldn't do it when a quick response is needed. With a table of any reasonable size you will have to handle continuation tokens as the query reaches a partition boundary or obtains 1k results.
The Azure storage team has a great post which explains the scalability targets. The throughput target for a single table partition is 500 entities/sec. The overall target for a storage account is 5,000 transactions/sec.
The answer is Pagination. Use the top_size -- max number of results or records in result -- in conjunction with next_partition_key and next_row_key the continuation tokens. That makes a significant even factorial difference in performance. For one, your results are statistically more likely to come from a single partition. Plain results show that sets are grouped by the partition continuation key and not the row continue key.
In other words, you also need to think about your UI or system output. Don't bother returning more than 10 to 20 results max 50. The user probably wont utilize or examine any more.
Sounds foolish. Do a Google search for "dog" and notice that the search returns only 10 items. No more. The next records are avail for you if you bother to hit 'continue'. Research has proven that almost no user ventures beyond that first page.
the select (returning a subset of the key-values) may make a difference; for example, use select = "PartitionKey,RowKey" or 'Name' whatever minimum you need.
"I believe, that the effect of crossing these boundaries also results
in continuation tokens, which require additional round-trips to
storage to retrieve the results. This results then in reducing
performance, as well as an increase in transaction counts (and
subsequently cost)."
...is slightly incorrect. the continuation token is used not because of crossing boundaries but because azure tables permit no more than 1000 results; therefore the two continuation tokens are used for the next set. default top_size is essentially 1000.
For your viewing pleasure, here's the description for queries entities from the azure python api. others are much the same.
'''
Get entities in a table; includes the $filter and $select options.
table_name: Table to query.
filter:
Optional. Filter as described at
http://msdn.microsoft.com/en-us/library/windowsazure/dd894031.aspx
select: Optional. Property names to select from the entities.
top: Optional. Maximum number of entities to return.
next_partition_key:
Optional. When top is used, the next partition key is stored in
result.x_ms_continuation['NextPartitionKey']
next_row_key:
Optional. When top is used, the next partition key is stored in
result.x_ms_continuation['NextRowKey']
'''

Resources