Circular programming - replace list elements by minimum value - haskell

I've just read this article about circular programming. It seems so alien to me. Although I can imagine the feedback as lazily evaluated thunk that will be evaluated to desired result later, just can't wrap my head around it. So I decided to write function that replaces every element of a list with it's minimum value.
trace :: (a -> c -> (b,c)) -> a -> b
trace f a = b
where (b,c) = f a c
repminList :: (Num a, Ord a) => [a] -> [a]
repminList = trace repIIminList
repIIminList [x] m = ([m], x)
repIIminList (a:as) m = let (replaced, m) = repIIminList as m
in (m : replaced, min a m)
But repminList [1,2,3] equals to [2,3,3]. What would be the correct version?

Your problem is that you have two different m variables and one shadows over the other so you don't end up using the actual circular variable at all. Here's the fixed version of your repIIminList:
repIIminList [x] m = ([m], x)
repIIminList (a:as) m = let (replaced, m') = repIIminList as m
in (m : replaced, min a m')
Here m is the final, smallest element of the list that you receive as circular parameter. The m' returned from the recursive call to repIIminList is the smallest value seen so far, so it's important that you append the final smallest value (i.e. m) to the result list and then update the current smallest value by returning min a m'.

That's a pretty cool technique! Here's a working program that's inspired by yours (I didn't really read the article except to glance at the picture, so this may not be exactly what the author intended, but it works):
looper :: (inputT -> feedfwdT -> feedbackT -> (feedbackT, outputT)) -> inputT -> feedfwdT -> outputT
looper f input primer = output
where (feedback, output) = f input primer feedback
min_feedback :: (Ord a) => [a] -> Maybe a -> a -> (a, [a])
min_feedback [] (Just p) _ = (p, [])
min_feedback (x:xs) partial_min minimum = (feedback, minimum:output)
where new_partial_min = case partial_min
of Nothing -> Just x
Just p -> Just $ min x p
(feedback, output) = min_feedback xs new_partial_min minimum
min_looped :: (Ord a) => [a] -> [a]
min_looped input = looper min_feedback input Nothing
main = print $ min_looped [1,4,6,2,6,3,-1,6,3,6,10]
The key here is that you need more than the feedback channel, you also need a feedforward channel to determine the minimum value on the first pass through the loop. My ASCII art skills are not up to the standard set in the article, so you'll just have to make do with this paint drawing:
The feedforward is the minimum value seen so far in the list. The primer kickstarts the feedforward channel. The feedback channel takes the result value from the feedforward channel back up to the start of the list. Finally the feedback value becomes the minimum value that gets used to fill the output list.

It's
repIIminList (x:[]) m' = ([m'], x)
repIIminList (x:xs) m' = (m' : xs', min x m) where (xs', m) = repIIminList xs m'
m is a current minimum, m' is a final minimum, xs is a current list, xs' is a final list. That is, repIIminList receives a list and a number and recursively replaces every element in a list with this number. repIIminList also computes the minimum of the list. trace applies repIIminList to the minimum, computed by repIIminList itself.
Using the state monad you can rewrite this in a pretty explicit way:
repminList :: [Int] -> [Int]
repminList [] = []
repminList (x:xs) = evalState (go xs) x where
go [] = get >>= return . (:[])
go (x:xs) = modify (min x) >> flip (:) <$> go xs <*> get
Or using CPS style directly:
repminList :: [Int] -> [Int]
repminList [] = []
repminList (x:xs) = foldr (\x r -> (\(x:xs) -> x:x:xs) . r . min x) (:[]) xs x

I'm too tired to analyze your code, divine your intent and the bug. However, I'll happily show you how I avoid having to think that hard when doing basic knot tying.
Its this State Monad, yay! My use of the State monad (below) is just a little plumbing that keeps track of a single current value in a manner that allows the value to be looked-up and updated.
repMin kicks off the computation by taking into account the empty list then running the state monad.
Our worker action f is provided with the input list and the minimum element in the list (currently a thunk, do not evaluate!)
f traverses the list computing the minimum on the way and replacing each element with the soon-to-be-known-but-not-yet-evaluatable minimum value m.
The code:
import Control.Monad.State
repMin :: [Int] -> [Int]
repMin [] = []
repMin xs#(x:_) = let (v,m) = runState (f m xs) x in v
f :: Int -> [Int] -> State Int [Int]
f m xs = mapM (λx -> checkMin x >> return m) xs
where
checkMin :: Int -> State Int ()
checkMin x = modify (min x)
Notice there's a lazyness leak here wrt our huge thunk of min a (min b ( min c ...))), but you get the picture.

Related

How can i fix this higher order function code in haskell?

I want to fix this code
h :: (a -> b) -> [a] -> [b]
h f = foldr (\x y -> f x : y) []
if i put h (+100) [1,2,3,4,5] in GHCI
it returns to me [101,202,303,404,505]
when i put h (*10) [1,2,3,4,5] then
i want to get [10,200,3000,40000,500000] list
can anyone help me fixing this code?
You here implemented a map, but in order to repeat the same operation multiple times, you need to perform a mapping on the tail y:
h :: (a -> a) -> [a] -> [a]
h f = foldr (\x y -> f x : map f y) []
Solving the general problem, as Willem Van Onsem's answer does, requires O(n^2) time to calculate the first n elements, because the function has to be applied k times to calculate the kth element.
To solve this sort of problem efficiently, you will need to take advantage of some additional structure. Based on your examples, I think the most obvious approach is to think about semigroup actions. That is, instead of applying an arbitrary function repeatedly, look for an efficient way to represent the compositions of the function. For example, (*x) can be represented by x, allowing (*x) . (*y) to be represented by x*y.
To apply this idea, we first need to transform Willem's solution to make the compositions explicit.
h :: (a -> a) -> [a] -> [a]
h f0 as0 = go as0 f0
where
go [] _ = []
go (a:as) f = f a : go as (f0 . f)
If we like, we can write that as a fold:
h :: (a -> a) -> [a] -> [a]
h f0 as = foldr go stop as f0
where
stop _ = []
go a r f = f a : r (f0 . f)
Now we've structured the function using an accumulator (which is a function). As we compose onto the accumulator, it will get slower and slower to apply it. We want to replace that accumulator with one we can "apply" quickly.
{-# language BangPatterns #-}
import Data.Semigroup
repeatedly :: Semigroup s => (s -> a -> a) -> s -> [a] -> [a]
repeatedly act s0 as = foldr go stop as s0
where
stop _ = []
go a r !s = act s a : r (s0 <> s)
Now you can use, for example,
repeatedly (\(Product s) -> (s*)) (Product 10) [1..5]
==> [10,200,3000,40000,500000]
repeatedly (\(Sum s) -> (s+)) (Sum 100) [1..5]
==> [101,202,303,404,505]
In each of these, you accumulate a product/sum which is added to/multiplied by the current list element.

Greaters function define

I would like to define a greaters function, which selects from a list items that are larger than the one before it.
For instance:
greaters [1,3,2,4,3,4,5] == [3,4,4,5]
greaters [5,10,6,11,7,12] == [10,11,12]
The definition I came up with is this :
greaters :: Ord a => [a] -> [a]
Things I tried so far:
greaters (x:xs) = group [ d | d <- xs, x < xs ]
Any tips?
We can derive a foldr-based solution by a series of re-writes starting from the hand-rolled recursive solution in the accepted answer:
greaters :: Ord a => [a] -> [a]
greaters [] = []
greaters (x:xs) = go x xs -- let's re-write this clause
where
go _ [] = []
go last (act:xs)
| last < act = act : go act xs
| otherwise = go act xs
greaters (x:xs) = go xs x -- swap the arguments
where
go [] _ = []
go (act:xs) last
| last < act = act : go xs act
| otherwise = go xs act
greaters (x:xs) = foldr g z xs x -- go ==> foldr g z
where
foldr g z [] _ = []
foldr g z (act:xs) last
| last < act = act : foldr g z xs act
| otherwise = foldr g z xs act
greaters (x:xs) = foldr g z xs x
where -- simplify according to
z _ = [] -- foldr's definition
g act (foldr g z xs) last
| last < act = act : foldr g z xs act
| otherwise = foldr g z xs act
Thus, with one last re-write of foldr g z xs ==> r,
greaters (x:xs) = foldr g z xs x
where
z = const []
g act r last
| last < act = act : r act
| otherwise = r act
The extra parameter serves as a state being passed forward as we go along the input list, the state being the previous element; thus avoiding the construction by zip of the shifted-pairs list serving the same purpose.
I would start from here:
greaters :: Ord a => [a] -> [a]
greaters [] = []
greaters (x:xs) = greatersImpl x xs
where
greatersImpl last [] = <fill this out>
greatersImpl last (x:xs) = <fill this out>
The following functions are everything you’d need for one possible solution :)
zip :: [a] -> [b] -> [(a, b)]
drop 1 :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
(<) :: Ord a => a -> a -> Bool
uncurry :: (a -> b -> c) -> (a, b) -> c
map :: (a -> b) -> [a] -> [b]
snd :: (a, b) -> b
Note: drop 1 can be used when you’d prefer a “safe” version of tail.
If you like over-generalization like me, you can use the witherable package.
{-# language ScopedTypeVariables #-}
import Control.Monad.State.Lazy
import Data.Witherable
{-
class (Traversable t, Filterable t) => Witherable t where
-- `wither` is an effectful version of mapMaybe.
wither :: Applicative f => (a -> f (Maybe b)) -> t a -> f (t b)
-}
greaters
:: forall t a. (Ord a, Witherable t)
=> t a -> t a
greaters xs = evalState (wither go xs) Nothing
where
go :: a -> State (Maybe a) (Maybe a)
go curr = do
st <- get
put (Just curr)
pure $ case st of
Nothing -> Nothing
Just prev ->
if curr > prev
then Just curr
else Nothing
The state is the previous element, if there is one. Everything is about as lazy as it can be. In particular:
If the container is a Haskell list, then it can be an infinite one and everything will still work. The beginning of the list can be produced without withering the rest.
If the container extends infinitely to the left (e.g., an infinite snoc list), then everything will still work. How can that be? We only need to know what was in the previous element to work out the state for the current element.
"Roll your own recursive function" is certainly an option here, but it can also be accomplished with a fold. filter can't do it because we need some sort of state being passed, but fold can nicely accumulate the result while keeping that state at the same time.
Of course the key idea is that we keep track of last element add the next one to the result set if it's greater than the last one.
greaters :: [Int] -> [Int]
greaters [] = []
greaters (h:t) = reverse . snd $ foldl (\(a, r) x -> (x, if x > a then x:r else r)) (h, []) t
I'd really love to eta-reduce it but since we're dropping the first element and seeding the accumulator with it it kinda becomes awkward with the empty list; still, this is effectively an one-liner.
So i have come up with a foldr solution. It should be similar to what #Will Ness has demonstrated but not quite i suppose as we don't need a separate empty list check in this one.
The thing is, while folding we need to encapsulate the previous element and also the state (the result) in a function type. So in the go helper function f is the state (the result) c is the current element of interest and p is the previous one (next since we are folding right). While folding from right to left we are nesting up these functions only to run it by applyying the head of the input list to it.
go :: Ord a => a -> (a -> [a]) -> (a -> [a])
go c f = \p -> let r = f c
in if c > p then c:r else r
greaters :: Ord a => [a] -> [a]
greaters = foldr go (const []) <*> head
*Main> greaters [1,3,2,4,3,4,5]
[3,4,4,5]
*Main> greaters [5,10,6,11,7,12]
[10,11,12]
*Main> greaters [651,151,1651,21,651,1231,4,1,16,135,87]
[1651,651,1231,16,135]
*Main> greaters [1]
[]
*Main> greaters []
[]
As per rightful comments of #Will Ness here is a modified slightly more general code which hopefully doesn't break suddenly when the comparison changes. Note that const [] :: b -> [a] is the initial function and [] is the terminator applied to the result of foldr. We don't need Maybe since [] can easily do the job of Nothing here.
gs :: Ord a => [a] -> [a]
gs xs = foldr go (const []) xs $ []
where
go :: Ord a => a -> ([a] -> [a]) -> ([a] -> [a])
go c f = \ps -> let r = f [c]
in case ps of
[] -> r
[p] -> if c > p then c:r else r

Is there a straight-forward solution to receiving the element *prior* to hitting the dropWhile predicate?

Given a condition, I want to search through a list of elements and return the first element that reaches the condition, and the previous one.
In C/C++ this is easy :
int i = 0;
for(;;i++) if (arr[i] == 0) break;
After we get the index where the condition is met, getting the previous element is easy, through "arr[i-1]"
In Haskell:
dropWhile (/=0) list gives us the last element I want
takeWhile (/=0) list gives us the first element I want
But I don't see a way of getting both in a simple manner. I could enumerate the list and use indexing, but that seems messy. Is there a proper way of doing this, or a way of working around this?
I would zip the list with its tail so that you have pairs of elements
available. Then you can just use find on the list of pairs:
f :: [Int] -> Maybe (Int, Int)
f xs = find ((>3) . snd) (zip xs (tail xs))
> f [1..10]
Just (3,4)
If the first element matches the predicate this will return
Nothing (or the second match if there is one) so you might need to special-case that if you want something
different.
As Robin Zigmond says break can also work:
g :: [Int] -> (Int, Int)
g xs = case break (>3) xs of (_, []) -> error "not found"
([], _) -> error "first element"
(ys, z:_) -> (last ys, z)
(Or have this return a Maybe as well, depending on what you need.)
But this will, I think, keep the whole prefix ys in memory until it
finds the match, whereas f can start garbage-collecting the elements
it has moved past. For small lists it doesn't matter.
I would use a zipper-like search:
type ZipperList a = ([a], [a])
toZipperList :: [a] -> ZipperList a
toZipperList = (,) []
moveUntil' :: (a -> Bool) -> ZipperList a -> ZipperList a
moveUntil' _ (xs, []) = (xs, [])
moveUntil' f (xs, (y:ys))
| f y = (xs, (y:ys))
| otherwise = moveUntil' f (y:xs, ys)
moveUntil :: (a -> Bool) -> [a] -> ZipperList a
moveUntil f = moveUntil' f . toZipperList
example :: [Int]
example = [2,3,5,7,11,13,17,19]
result :: ZipperList Int
result = moveUntil (>10) example -- ([7,5,3,2], [11,13,17,19])
The good thing about zippers is that they are efficient, you can access as many elements near the index you want, and you can move the focus of the zipper forwards and backwards. Learn more about zippers here:
http://learnyouahaskell.com/zippers
Note that my moveUntil function is like break from the Prelude but the initial part of the list is reversed. Hence you can simply get the head of both lists.
A non-awkward way of implementing this as a fold is making it a paramorphism. For general explanatory notes, see this answer by dfeuer (I took foldrWithTails from it):
-- The extra [a] argument f takes with respect to foldr
-- is the tail of the list at each step of the fold.
foldrWithTails :: (a -> [a] -> b -> b) -> b -> [a] -> b
foldrWithTails f n = go
where
go (a : as) = f a as (go as)
go [] = n
boundary :: (a -> Bool) -> [a] -> Maybe (a, a)
boundary p = foldrWithTails findBoundary Nothing
where
findBoundary x (y : _) bnd
| p y = Just (x, y)
| otherwise = bnd
findBoundary _ [] _ = Nothing
Notes:
If p y is true we don't have to look at bnd to get the result. That makes the solution adequately lazy. You can check that by trying out boundary (> 1000000) [0..] in GHCi.
This solution gives no special treatment to the edge case of the first element of the list matching the condition. For instance:
GHCi> boundary (<1) [0..9]
Nothing
GHCi> boundary even [0..9]
Just (1,2)
There's several alternatives; either way, you'll have to implement this yourself. You could use explicit recursion:
getLastAndFirst :: (a -> Bool) -> [a] -> Maybe (a, a)
getLastAndFirst p (x : xs#(y:ys))
| p y = Just (x, y)
| otherwise = getLastAndFirst p xs
getLastAndFirst _ [] = Nothing
Alternately, you could use a fold, but that would look fairly similar to the above, except less readable.
A third option is to use break, as suggested in the comments:
getLastAndFirst' :: (a -> Bool) -> [a] -> Maybe (a,a)
getLastAndFirst' p l =
case break p l of
(xs#(_:_), (y:_)) -> Just (last xs, y)
_ -> Nothing
(\(xs, ys) -> [last xs, head ys]) $ break (==0) list
Using break as Robin Zigmond suggested ended up short and simple, not using Maybe to catch edge-cases, but I could replace the lambda with a simple function that used Maybe.
I toyed a bit more with the solution and came up with
breakAround :: Int -> Int -> (a -> Bool) -> [a] -> [a]
breakAround m n cond list = (\(xs, ys) -> (reverse (reverse take m (reverse xs))) ++ take n ys) $ break (cond) list
which takes two integers, a predicate, and a list of a, and returns a single list of m elements before the predicate and n elements after.
Example: breakAround 3 2 (==0) [3,2,1,0,10,20,30] would return [3,2,1,0,10]

Taking a list of lists and generating all variants with one element replaced [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
I have types for a two-dimensional map of characters:
type Row = [Char]
type Mappy = [Row]
I'd like to write a function that takes a Mappy like:
[['o','o'],['o','o']]
and generates a list of all Mappys with a single 'o' element replaced with 'i':
[ [['i','o'],['o','o']]
, [['o','i'],['o','o']]
, [['o','o'],['i','o']]
, [['o','o'],['o','i']]
]
Here's what I've tried: I think I need to use the map function, because I need to go over each element, but I don't know how, because a map function doesn't keep track of the position it is working on.
type Row = [Char]
type Mappy = [Row]
func :: Mappy -> [Mappy]
func a = map (map someFunc a) a
someFunc :: Mappy -> Char -> Mappy
someFunc a b = if b == "o"
then undefined
else a
Obviously, I should change the undefined, but i have no idea how. Thanks in advance.
Zippers are great, and there's an interesting blog post about
implementing Conway's Game of Life using zippers and comonads in Haskell. On the other
hand, if this is still your first week learning Haskell, you might
want to save Comonads for Thursday, right?
Here's another approach that uses simple recursion and list
comprehensions and no complex Haskell features.
First, imagine we have an awesome function:
varyOne :: (a -> [a]) -> [a] -> [[a]]
varyOne = undefined
that works as follows. Given a function f that produces zero or
more variants of an element a, the function call varyOne f xs
generates all variants of the list xs that result from taking
exactly one element of xs, say x in the middle of the list, and replacing it with all the
variants given by f x.
This function is surprisingly flexible. It can generate the list of all variants resulting from forcibly replacing an element by a constant:
> varyOne (\x -> [3]) [1,2,3,4]
[[3,2,3,4],[1,3,3,4],[1,2,3,4],[1,2,3,3]]
By returning a singleton variant for a specific value and an empty list of variants for other values, it can generate all variants that replace an 'o' with an 'i' while suppressing the "variants" where no replacement is possible:
> let varyRow = varyOne (\c -> if c == 'o' then ['i'] else [])
> varyRow "ooxo"
["ioxo","oixo","ooxi"]
and, because varyRow itself generates variants of a row, it can be used with varyOne to generate variants of tables where a particular row has been replaced by its possible variants:
> varyOne varyRow ["ooo","oox","ooo"]
[["ioo","oox","ooo"],["oio","oox","ooo"],["ooi","oox","ooo"],
["ooo","iox","ooo"],["ooo","oix","ooo"],
["ooo","oox","ioo"],["ooo","oox","oio"],["ooo","oox","ooi"]]
It turns out that this awesome function is surprisingly easy to write:
varyOne :: (a -> [a]) -> [a] -> [[a]]
varyOne f (x:xs)
= [y:xs | y <- f x] ++ [x:ys | ys <- varyOne f xs]
varyOne _ [] = []
The first list comprehension generates all the variants for the current element. The second list comprehension generates variants that involve changes to the right of the current element using a recursive varyOne call.
Given varyOne, we can define:
replaceOne :: Char -> Char -> Mappy -> [Mappy]
replaceOne old new = varyOne (varyOne rep1)
where rep1 x = if x == old then [new] else []
and:
> replaceOne 'o' 'i' ["ooo","oox","ooo"]
[["ioo","oox","ooo"],["oio","oox","ooo"],["ooi","oox","ooo"]
,["ooo","iox","ooo"],["ooo","oix","ooo"]
,["ooo","oox","ioo"],["ooo","oox","oio"],["ooo","oox","ooi"]]
is probably the function you're looking for.
If you prefer to unconditionally replace a single element with i, no matter what the old element was, then this will work:
> varyOne (varyOne (const ['i'])) ["ooo","oox","ooo"]
[["ioo","oox","ooo"],["oio","oox","ooo"],["ooi","oox","ooo"]
,["ooo","iox","ooo"],["ooo","oix","ooo"],["ooo","ooi","ooo"]
,["ooo","oox","ioo"],["ooo","oox","oio"],["ooo","oox","ooi"]]
What you want, young BaasBartMans, is a Zipper.
data Zipper a = Zipper [a] a [a]
ofList :: [a] -> Maybe (Zipper a)
ofList [] = Nothing
ofList (a:as) = Just (Zipper [] a as)
A zipper gives you the context for a position in a list, so you
can easily modify them one at a time, step forward and backward and such.
We can recover a list from a zipper:
instance Foldable Zipper where
foldr f c (Zipper ls a rs) = foldl' (flip f) (f a (foldr f c rs)) ls
We can modify every position in a Zipper simultaneously:
instance Functor Zipper where
fmap f (Zipper ls a rs) = Zipper (fmap f ls) (f a) (fmap f rs)
Or just the focused element:
here :: Functor f => (a -> f a) -> Zipper a -> f (Zipper a)
here f (Zipper ls a rs) = fmap (\a' -> Zipper ls a' rs) (f a)
And as a Zipper is a Comonad, we can modify each element in context:
instance Comonad Zipper where
extract (Zipper _ a _) = a
extend f z#(Zipper ls a rs) = Zipper ls' a' rs' where
a' = f z
ls' = unfoldr (fmap (\z' -> (f z', z')) . goLeft) z
rs' = unfoldr (fmap (\z' -> (f z', z')) . goRight) z
Using that, we can build a function that modifies each element of a list in context:
everywhere :: Alternative f => (a -> f a) -> [a] -> f [a]
everywhere f as = case ofList as of
Nothing -> pure []
Just z -> asum $ extend (fmap toList . here f) z
Which works for simple lists:
λ everywhere (\a -> [a+1]) [10,20,30]
[[11,20,30]
,[10,21,30]
,[10,20,31]]
And nested lists:
λ everywhere (everywhere (\a -> [a+1])) [[10], [20,20], [30,30,30]]
[[[11],[20,20],[30,30,30]]
,[[10],[21,20],[30,30,30]]
,[[10],[20,21],[30,30,30]]
,[[10],[20,20],[31,30,30]]
,[[10],[20,20],[30,31,30]]
,[[10],[20,20],[30,30,31]]]

Haskell "transform" function

I've written what I imagine would be a common function in Haskell, but I couldn't find it implemented anywhere. For want of a better word I've called it "transform".
What "transform" does three arguments: a list, and an initial state and a function that takes an element from the list, a state, and produces an element for an output list, and a new state. The output list is the same length as the input list.
It's kind of like "scanl" if it also took a state parameter, or like "unfoldr" if you could feed it a list.
Indeed, I've implemented this function below, in two different ways that have the same result:
transform1 :: (b -> c -> (a, c)) -> c -> [b] -> [a]
transform1 f init x = unfoldr f' (x, init)
where
f' ((l:ls), accum) = let (r, new_accum) = f l accum in Just (r, (ls, new_accum))
f' ([], _) = Nothing
transform2 :: (b -> c -> (a, c)) -> c -> [b] -> [a]
transform2 f init x = map fst $ tail $ scanl f' init' x where
f' (_,x) y = f y x
init' = (undefined, init)
This sort of operation seems relatively common though, that is, taking a list and walking through it with some state and producing a new list, so I'm wondering if there's a function that already exists and I'm reinventing the wheel. If so, I'll just use that, but if not, I might package what I've got into a (very) small library.
This is almost, but not exactly Data.List.mapAccumL. The difference is that mapAccumL also includes the final state. Also it recently got generalized to Traversable.
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)

Resources