How does Vec<T> implement iter()? - rust

I am looking at the code of Vec<T> to see how it implements iter() as I want to implement iterators for my struct:
pub struct Column<T> {
name: String,
vec: Vec<T>,
...
}
My goal is not to expose the fields and provide iterators to do looping, max, min, sum, avg, etc for a column.
fn test() {
let col: Column<f32> = ...;
let max = col.iter().max();
}
I thought I would see how Vec<T> does iteration. I can see iter() is defined in SliceExt but it's implemented for [T] and not Vec<T> so I am stumped how you can call iter() from Vec<T>?

Indeed, as fjh said, this happens due to how dereference operator functions in Rust and how methods are resolved.
Rust has special Deref trait which allows values of the types implementing it to be "dereferenced" to obtain another type, usually one which is naturally connected to the source type. For example, an implementation like this one:
impl<T> Deref for Vec<T> {
type Target = [T];
fn deref<'a>(&'a self) -> &'a [T] { self.as_slice() }
}
means that applying * unary operator to a Vec<T> would yield [T] which you would need to borrow again:
let v: Vec<u32> = vec![0; 10];
let s: &[u32] = &*v;
(note that even though deref() returns a reference, the dereference operator * returns Target, not &Target - the compiler inserts automatic dereference if you do not borrow the dereferenced value immediately).
This is the first piece of puzzle. The second one is how methods are resolved. Basically, when you write something like
v.iter()
the compiler first tries to find iter() defined on the type of v (in this case Vec<u32>). If no such method can be found, the compiler tries to insert an appropriate number of *s and &s so the method invocation becomes valid. In this case it find that the following is indeed a valid invocation:
(&*v).iter()
Remember, Deref on Vec<T> returns &[T], and slices do have iter() method defined on them. This is also how you can invoke e.g. a method taking &self on a regular value - the compiler automatically inserts a reference operation for you.

Related

How to convert from `cell::Ref<'_, [u8]>` into `&[u8]` or the other way around?

I'm modifying a library that holds Items returned by ChunkExact slice iterator. My iterator requires interior mutability and uses a RefCell. As a result of that, my iterator cannot return Items of type &[u8] but returns Ref<'_, [u8]> instead. The two types seem to be equivalent for practical use. For instance, this:
for i in slice.chunks_exact(2) {
println!("{:?}", i);
}
works just as well as this:
for my_iterator() {
println!("{:?}", i);
}
Full working example in the playground.
Close as they are, I cannot convert one item into the other:
= note: expected enum `Option<Ref<'_, [u8]>>`
found enum `Option<&[u8]>`
I saw the experimental cell::Ref::leak method, but seems like what I'm trying to do should not require such a scary feature...
You can use Option::as_deref:
let a: Option<Ref<'_, [u8]>> = ...;
let b: Option<&[u8]> = a.as_deref();
Ref<'_, T> implements Deref<Target = T> which is why Ref<'_, [u8]> can be used like a &[u8] in most contexts. However, they are still different types, which is why you get the error on assigning one to the other in an option.
You cannot go the other way around and create a Ref<'_, T> from a &T since there is no RefCell for it to reference.
This will only work in a context where the original Option<Ref> is kept around. You cannot use this to convert your iterator from returning Ref<'_, [u8]>s to returning &[u8]s. This is because the lifetime of the &[u8] is bound to the Ref, not the original RefCell.

Cannot return value referencing function parameter when parsing a list of ELFs with goblin [duplicate]

I am doing the Rust by Example tutorial which has this code snippet:
// Vec example
let vec1 = vec![1, 2, 3];
let vec2 = vec![4, 5, 6];
// `iter()` for vecs yields `&i32`. Destructure to `i32`.
println!("2 in vec1: {}", vec1.iter() .any(|&x| x == 2));
// `into_iter()` for vecs yields `i32`. No destructuring required.
println!("2 in vec2: {}", vec2.into_iter().any(| x| x == 2));
// Array example
let array1 = [1, 2, 3];
let array2 = [4, 5, 6];
// `iter()` for arrays yields `&i32`.
println!("2 in array1: {}", array1.iter() .any(|&x| x == 2));
// `into_iter()` for arrays unusually yields `&i32`.
println!("2 in array2: {}", array2.into_iter().any(|&x| x == 2));
I am thoroughly confused — for a Vec the iterator returned from iter yields references and the iterator returned from into_iter yields values, but for an array these iterators are identical?
What is the use case/API for these two methods?
TL;DR:
The iterator returned by into_iter may yield any of T, &T or &mut T, depending on the context.
The iterator returned by iter will yield &T, by convention.
The iterator returned by iter_mut will yield &mut T, by convention.
The first question is: "What is into_iter?"
into_iter comes from the IntoIterator trait:
pub trait IntoIterator
where
<Self::IntoIter as Iterator>::Item == Self::Item,
{
type Item;
type IntoIter: Iterator;
fn into_iter(self) -> Self::IntoIter;
}
You implement this trait when you want to specify how a particular type is to be converted into an iterator. Most notably, if a type implements IntoIterator it can be used in a for loop.
For example, Vec implements IntoIterator... thrice!
impl<T> IntoIterator for Vec<T>
impl<'a, T> IntoIterator for &'a Vec<T>
impl<'a, T> IntoIterator for &'a mut Vec<T>
Each variant is slightly different.
This one consumes the Vec and its iterator yields values (T directly):
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(mut self) -> IntoIter<T> { /* ... */ }
}
The other two take the vector by reference (don't be fooled by the signature of into_iter(self) because self is a reference in both cases) and their iterators will produce references to the elements inside Vec.
This one yields immutable references:
impl<'a, T> IntoIterator for &'a Vec<T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> { /* ... */ }
}
While this one yields mutable references:
impl<'a, T> IntoIterator for &'a mut Vec<T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> { /* ... */ }
}
So:
What is the difference between iter and into_iter?
into_iter is a generic method to obtain an iterator, whether this iterator yields values, immutable references or mutable references is context dependent and can sometimes be surprising.
iter and iter_mut are ad-hoc methods. Their return type is therefore independent of the context, and will conventionally be iterators yielding immutable references and mutable references, respectively.
The author of the Rust by Example post illustrates the surprise coming from the dependence on the context (i.e., the type) on which into_iter is called, and is also compounding the problem by using the fact that:
IntoIterator is not implemented for [T; N], only for &[T; N] and &mut [T; N] -- it will be for Rust 2021.
When a method is not implemented for a value, it is automatically searched for references to that value instead
which is very surprising for into_iter since all types (except [T; N]) implement it for all 3 variations (value and references).
Arrays implement IntoIterator (in such a surprising fashion) to make it possible to iterate over references to them in for loops.
As of Rust 1.51, it's possible for the array to implement an iterator that yields values (via array::IntoIter), but the existing implementation of IntoIterator that automatically references makes it hard to implement by-value iteration via IntoIterator.
I came here from Google seeking a simple answer which wasn't provided by the other answers. Here's that simple answer:
iter() iterates over the items by reference
iter_mut() iterates over the items, giving a mutable reference to each item
into_iter() iterates over the items, moving them into the new scope
So for x in my_vec { ... } is essentially equivalent to my_vec.into_iter().for_each(|x| ... ) - both move the elements of my_vec into the ... scope.
If you just need to look at the data, use iter, if you need to edit/mutate it, use iter_mut, and if you need to give it a new owner, use into_iter.
This was helpful: http://hermanradtke.com/2015/06/22/effectively-using-iterators-in-rust.html
I think there's something to clarify a bit more. Collection types, such as Vec<T> and VecDeque<T>, have into_iter method that yields T because they implement IntoIterator<Item=T>. There's nothing to stop us to create a type Foo<T> if which is iterated over, it will yield not T but another type U. That is, Foo<T> implements IntoIterator<Item=U>.
In fact, there are some examples in std: &Path implements IntoIterator<Item=&OsStr> and &UnixListener implements IntoIterator<Item=Result<UnixStream>>.
The difference between into_iter and iter
Back to the original question on the difference between into_iter and iter. Similar to what others have pointed out, the difference is that into_iter is a required method of IntoIterator which can yield any type specified in IntoIterator::Item. Typically, if a type implements IntoIterator<Item=I>, by convention it has also two ad-hoc methods: iter and iter_mut which yield &I and &mut I, respectively.
What it implies is that we can create a function that receives a type that has into_iter method (i.e. it is an iterable) by using a trait bound:
fn process_iterable<I: IntoIterator>(iterable: I) {
for item in iterable {
// ...
}
}
However, we can't* use a trait bound to require a type to have iter method or iter_mut method, because they're just conventions. We can say that into_iter is more widely useable than iter or iter_mut.
Alternatives to iter and iter_mut
Another interesting thing to observe is that iter is not the only way to get an iterator that yields &T. By convention (again), collection types SomeCollection<T> in std which have iter method also have their immutable reference types &SomeCollection<T> implement IntoIterator<Item=&T>. For example, &Vec<T> implements IntoIterator<Item=&T>, so it enables us to iterate over &Vec<T>:
let v = vec![1, 2];
// Below is equivalent to: `for item in v.iter() {`
for item in &v {
println!("{}", item);
}
If v.iter() is equivalent to &v in that both implement IntoIterator<Item=&T>, why then does Rust provide both? It's for ergonomics. In for loops, it's a bit more concise to use &v than v.iter(); but in other cases, v.iter() is a lot clearer than (&v).into_iter():
let v = vec![1, 2];
let a: Vec<i32> = v.iter().map(|x| x * x).collect();
// Although above and below are equivalent, above is a lot clearer than below.
let b: Vec<i32> = (&v).into_iter().map(|x| x * x).collect();
Similarly, in for loops, v.iter_mut() can be replaced with &mut v:
let mut v = vec![1, 2];
// Below is equivalent to: `for item in v.iter_mut() {`
for item in &mut v {
*item *= 2;
}
When to provide (implement) into_iter and iter methods for a type
If the type has only one “way” to be iterated over, we should implement both. However, if there are two ways or more it can be iterated over, we should instead provide an ad-hoc method for each way.
For example, String provides neither into_iter nor iter because there are two ways to iterate it: to iterate its representation in bytes or to iterate its representation in characters. Instead, it provides two methods: bytes for iterating the bytes and chars for iterating the characters, as alternatives to iter method.
* Well, technically we can do it by creating a trait. But then we need to impl that trait for each type we want to use. Meanwhile, many types in std already implement IntoIterator.
.into_iter() is not implemented for a array itself, but only &[]. Compare:
impl<'a, T> IntoIterator for &'a [T]
type Item = &'a T
with
impl<T> IntoIterator for Vec<T>
type Item = T
Since IntoIterator is defined only on &[T], the slice itself cannot be dropped the same way as Vec when you use the values. (values cannot be moved out)
Now, why that's the case is a different issues, and I'd like to learn myself. Speculating: array is the data itself, slice is only a view into it. In practice you cannot move the array as a value into another function, just pass a view of it, so you cannot consume it there either.
IntoIterator and Iterator are usually used like this.
We implement IntoIterator for structures that has an inner/nested value (or is behind a reference) that either implements Iterator or has an intermediate "Iter" structure.
For example, lets create a "new" data structure:
struct List<T>;
// Looks something like this:
// - List<T>(Option<Box<ListCell<T>>>)
// - ListCell<T> { value: T, next: List<T> }
We want this List<T> to be iterable, so this should be a good place to implement Iterator right? Yes, we could do that, but that would limit us in certain ways.
Instead we create an intermediate "iterable" structure and implement the Iterator trait:
// NOTE: I have removed all lifetimes to make it less messy.
struct ListIter<T> { cursor: &List<T> };
impl<T> Iterator for ListIter<T> {
type Item = &T;
fn next(&mut self) -> Option<Self::Item> {...}
}
So now we need to somehow connect List<T> and ListIter<T>. This can be done by implementing IntoIterator for List.
impl<T> IntoIterator for List<T> {
type Item = T;
type Iter = ListIter<Self::Item>;
fn into_iter(self) -> Self::Iter { ListIter { cursor: &self } }
}
IntoIterator can also be implemented multiple times for container struct if for example it contains different nested iterable fields or we have some higher kinded type situation.
Lets say we have a Collection<T>: IntoIterator trait that will be implemented by multiple data structures, e.g. List<T>, Vector<T> and Tree<T> that also have their respective Iter; ListIter<T>, VectorIter<T> and TreeIter<T>. But what does this actually mean when we go from generic to specific code?
fn wrapper<C>(value: C) where C: Collection<i32> {
let iter = value.into_iter() // But what iterator are we?
...
}
This code is not 100% correct, lifetimes and mutability support are omitted.

How do I write an iterator extension that can be used only with an iterator over some type? [duplicate]

I am doing the Rust by Example tutorial which has this code snippet:
// Vec example
let vec1 = vec![1, 2, 3];
let vec2 = vec![4, 5, 6];
// `iter()` for vecs yields `&i32`. Destructure to `i32`.
println!("2 in vec1: {}", vec1.iter() .any(|&x| x == 2));
// `into_iter()` for vecs yields `i32`. No destructuring required.
println!("2 in vec2: {}", vec2.into_iter().any(| x| x == 2));
// Array example
let array1 = [1, 2, 3];
let array2 = [4, 5, 6];
// `iter()` for arrays yields `&i32`.
println!("2 in array1: {}", array1.iter() .any(|&x| x == 2));
// `into_iter()` for arrays unusually yields `&i32`.
println!("2 in array2: {}", array2.into_iter().any(|&x| x == 2));
I am thoroughly confused — for a Vec the iterator returned from iter yields references and the iterator returned from into_iter yields values, but for an array these iterators are identical?
What is the use case/API for these two methods?
TL;DR:
The iterator returned by into_iter may yield any of T, &T or &mut T, depending on the context.
The iterator returned by iter will yield &T, by convention.
The iterator returned by iter_mut will yield &mut T, by convention.
The first question is: "What is into_iter?"
into_iter comes from the IntoIterator trait:
pub trait IntoIterator
where
<Self::IntoIter as Iterator>::Item == Self::Item,
{
type Item;
type IntoIter: Iterator;
fn into_iter(self) -> Self::IntoIter;
}
You implement this trait when you want to specify how a particular type is to be converted into an iterator. Most notably, if a type implements IntoIterator it can be used in a for loop.
For example, Vec implements IntoIterator... thrice!
impl<T> IntoIterator for Vec<T>
impl<'a, T> IntoIterator for &'a Vec<T>
impl<'a, T> IntoIterator for &'a mut Vec<T>
Each variant is slightly different.
This one consumes the Vec and its iterator yields values (T directly):
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(mut self) -> IntoIter<T> { /* ... */ }
}
The other two take the vector by reference (don't be fooled by the signature of into_iter(self) because self is a reference in both cases) and their iterators will produce references to the elements inside Vec.
This one yields immutable references:
impl<'a, T> IntoIterator for &'a Vec<T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> { /* ... */ }
}
While this one yields mutable references:
impl<'a, T> IntoIterator for &'a mut Vec<T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> { /* ... */ }
}
So:
What is the difference between iter and into_iter?
into_iter is a generic method to obtain an iterator, whether this iterator yields values, immutable references or mutable references is context dependent and can sometimes be surprising.
iter and iter_mut are ad-hoc methods. Their return type is therefore independent of the context, and will conventionally be iterators yielding immutable references and mutable references, respectively.
The author of the Rust by Example post illustrates the surprise coming from the dependence on the context (i.e., the type) on which into_iter is called, and is also compounding the problem by using the fact that:
IntoIterator is not implemented for [T; N], only for &[T; N] and &mut [T; N] -- it will be for Rust 2021.
When a method is not implemented for a value, it is automatically searched for references to that value instead
which is very surprising for into_iter since all types (except [T; N]) implement it for all 3 variations (value and references).
Arrays implement IntoIterator (in such a surprising fashion) to make it possible to iterate over references to them in for loops.
As of Rust 1.51, it's possible for the array to implement an iterator that yields values (via array::IntoIter), but the existing implementation of IntoIterator that automatically references makes it hard to implement by-value iteration via IntoIterator.
I came here from Google seeking a simple answer which wasn't provided by the other answers. Here's that simple answer:
iter() iterates over the items by reference
iter_mut() iterates over the items, giving a mutable reference to each item
into_iter() iterates over the items, moving them into the new scope
So for x in my_vec { ... } is essentially equivalent to my_vec.into_iter().for_each(|x| ... ) - both move the elements of my_vec into the ... scope.
If you just need to look at the data, use iter, if you need to edit/mutate it, use iter_mut, and if you need to give it a new owner, use into_iter.
This was helpful: http://hermanradtke.com/2015/06/22/effectively-using-iterators-in-rust.html
I think there's something to clarify a bit more. Collection types, such as Vec<T> and VecDeque<T>, have into_iter method that yields T because they implement IntoIterator<Item=T>. There's nothing to stop us to create a type Foo<T> if which is iterated over, it will yield not T but another type U. That is, Foo<T> implements IntoIterator<Item=U>.
In fact, there are some examples in std: &Path implements IntoIterator<Item=&OsStr> and &UnixListener implements IntoIterator<Item=Result<UnixStream>>.
The difference between into_iter and iter
Back to the original question on the difference between into_iter and iter. Similar to what others have pointed out, the difference is that into_iter is a required method of IntoIterator which can yield any type specified in IntoIterator::Item. Typically, if a type implements IntoIterator<Item=I>, by convention it has also two ad-hoc methods: iter and iter_mut which yield &I and &mut I, respectively.
What it implies is that we can create a function that receives a type that has into_iter method (i.e. it is an iterable) by using a trait bound:
fn process_iterable<I: IntoIterator>(iterable: I) {
for item in iterable {
// ...
}
}
However, we can't* use a trait bound to require a type to have iter method or iter_mut method, because they're just conventions. We can say that into_iter is more widely useable than iter or iter_mut.
Alternatives to iter and iter_mut
Another interesting thing to observe is that iter is not the only way to get an iterator that yields &T. By convention (again), collection types SomeCollection<T> in std which have iter method also have their immutable reference types &SomeCollection<T> implement IntoIterator<Item=&T>. For example, &Vec<T> implements IntoIterator<Item=&T>, so it enables us to iterate over &Vec<T>:
let v = vec![1, 2];
// Below is equivalent to: `for item in v.iter() {`
for item in &v {
println!("{}", item);
}
If v.iter() is equivalent to &v in that both implement IntoIterator<Item=&T>, why then does Rust provide both? It's for ergonomics. In for loops, it's a bit more concise to use &v than v.iter(); but in other cases, v.iter() is a lot clearer than (&v).into_iter():
let v = vec![1, 2];
let a: Vec<i32> = v.iter().map(|x| x * x).collect();
// Although above and below are equivalent, above is a lot clearer than below.
let b: Vec<i32> = (&v).into_iter().map(|x| x * x).collect();
Similarly, in for loops, v.iter_mut() can be replaced with &mut v:
let mut v = vec![1, 2];
// Below is equivalent to: `for item in v.iter_mut() {`
for item in &mut v {
*item *= 2;
}
When to provide (implement) into_iter and iter methods for a type
If the type has only one “way” to be iterated over, we should implement both. However, if there are two ways or more it can be iterated over, we should instead provide an ad-hoc method for each way.
For example, String provides neither into_iter nor iter because there are two ways to iterate it: to iterate its representation in bytes or to iterate its representation in characters. Instead, it provides two methods: bytes for iterating the bytes and chars for iterating the characters, as alternatives to iter method.
* Well, technically we can do it by creating a trait. But then we need to impl that trait for each type we want to use. Meanwhile, many types in std already implement IntoIterator.
.into_iter() is not implemented for a array itself, but only &[]. Compare:
impl<'a, T> IntoIterator for &'a [T]
type Item = &'a T
with
impl<T> IntoIterator for Vec<T>
type Item = T
Since IntoIterator is defined only on &[T], the slice itself cannot be dropped the same way as Vec when you use the values. (values cannot be moved out)
Now, why that's the case is a different issues, and I'd like to learn myself. Speculating: array is the data itself, slice is only a view into it. In practice you cannot move the array as a value into another function, just pass a view of it, so you cannot consume it there either.
IntoIterator and Iterator are usually used like this.
We implement IntoIterator for structures that has an inner/nested value (or is behind a reference) that either implements Iterator or has an intermediate "Iter" structure.
For example, lets create a "new" data structure:
struct List<T>;
// Looks something like this:
// - List<T>(Option<Box<ListCell<T>>>)
// - ListCell<T> { value: T, next: List<T> }
We want this List<T> to be iterable, so this should be a good place to implement Iterator right? Yes, we could do that, but that would limit us in certain ways.
Instead we create an intermediate "iterable" structure and implement the Iterator trait:
// NOTE: I have removed all lifetimes to make it less messy.
struct ListIter<T> { cursor: &List<T> };
impl<T> Iterator for ListIter<T> {
type Item = &T;
fn next(&mut self) -> Option<Self::Item> {...}
}
So now we need to somehow connect List<T> and ListIter<T>. This can be done by implementing IntoIterator for List.
impl<T> IntoIterator for List<T> {
type Item = T;
type Iter = ListIter<Self::Item>;
fn into_iter(self) -> Self::Iter { ListIter { cursor: &self } }
}
IntoIterator can also be implemented multiple times for container struct if for example it contains different nested iterable fields or we have some higher kinded type situation.
Lets say we have a Collection<T>: IntoIterator trait that will be implemented by multiple data structures, e.g. List<T>, Vector<T> and Tree<T> that also have their respective Iter; ListIter<T>, VectorIter<T> and TreeIter<T>. But what does this actually mean when we go from generic to specific code?
fn wrapper<C>(value: C) where C: Collection<i32> {
let iter = value.into_iter() // But what iterator are we?
...
}
This code is not 100% correct, lifetimes and mutability support are omitted.

Proper signature for a function accepting an iterator of strings

I'm confused about the proper type to use for an iterator yielding string slices.
fn print_strings<'a>(seq: impl IntoIterator<Item = &'a str>) {
for s in seq {
println!("- {}", s);
}
}
fn main() {
let arr: [&str; 3] = ["a", "b", "c"];
let vec: Vec<&str> = vec!["a", "b", "c"];
let it: std::str::Split<'_, char> = "a b c".split(' ');
print_strings(&arr);
print_strings(&vec);
print_strings(it);
}
Using <Item = &'a str>, the arr and vec calls don't compile. If, instead, I use <Item = &'a'a str>, they work, but the it call doesn't compile.
Of course, I can make the Item type generic too, and do
fn print_strings<'a, I: std::fmt::Display>(seq: impl IntoIterator<Item = I>)
but it's getting silly. Surely there must be a single canonical "iterator of string values" type?
The error you are seeing is expected because seq is &Vec<&str> and &Vec<T> implements IntoIterator with Item=&T, so with your code, you end up with Item=&&str where you are expecting it to be Item=&str in all cases.
The correct way to do this is to expand Item type so that is can handle both &str and &&str. You can do this by using more generics, e.g.
fn print_strings(seq: impl IntoIterator<Item = impl AsRef<str>>) {
for s in seq {
let s = s.as_ref();
println!("- {}", s);
}
}
This requires the Item to be something that you can retrieve a &str from, and then in your loop .as_ref() will return the &str you are looking for.
This also has the added bonus that your code will also work with Vec<String> and any other type that implements AsRef<str>.
TL;DR The signature you use is fine, it's the callers that are providing iterators with wrong Item - but can be easily fixed.
As explained in the other answer, print_string() doesn't accept &arr and &vec because IntoIterator for &[T; n] and &Vec<T> yield references to T. This is because &Vec, itself a reference, is not allowed to consume the Vec in order to move T values out of it. What it can do is hand out references to T items sitting inside the Vec, i.e. items of type &T. In the case of your callers that don't compile, the containers contain &str, so their iterators hand out &&str.
Other than making print_string() more generic, another way to fix the issue is to call it correctly to begin with. For example, these all compile:
print_strings(arr.iter().map(|sref| *sref));
print_strings(vec.iter().copied());
print_strings(it);
Playground
iter() is the method provided by slices (and therefore available on arrays and Vec) that iterates over references to elements, just like IntoIterator of &Vec. We call it explicitly to be able to call map() to convert &&str to &str the obvious way - by using the * operator to dereference the &&str. The copied() iterator adapter is another way of expressing the same, possibly a bit less cryptic than map(|x| *x). (There is also cloned(), equivalent to map(|x| x.clone()).)
It's also possible to call print_strings() if you have a container with String values:
let v = vec!["foo".to_owned(), "bar".to_owned()];
print_strings(v.iter().map(|s| s.as_str()));

Access the value of the struct while iterating over the array of structs [duplicate]

I am doing the Rust by Example tutorial which has this code snippet:
// Vec example
let vec1 = vec![1, 2, 3];
let vec2 = vec![4, 5, 6];
// `iter()` for vecs yields `&i32`. Destructure to `i32`.
println!("2 in vec1: {}", vec1.iter() .any(|&x| x == 2));
// `into_iter()` for vecs yields `i32`. No destructuring required.
println!("2 in vec2: {}", vec2.into_iter().any(| x| x == 2));
// Array example
let array1 = [1, 2, 3];
let array2 = [4, 5, 6];
// `iter()` for arrays yields `&i32`.
println!("2 in array1: {}", array1.iter() .any(|&x| x == 2));
// `into_iter()` for arrays unusually yields `&i32`.
println!("2 in array2: {}", array2.into_iter().any(|&x| x == 2));
I am thoroughly confused — for a Vec the iterator returned from iter yields references and the iterator returned from into_iter yields values, but for an array these iterators are identical?
What is the use case/API for these two methods?
TL;DR:
The iterator returned by into_iter may yield any of T, &T or &mut T, depending on the context.
The iterator returned by iter will yield &T, by convention.
The iterator returned by iter_mut will yield &mut T, by convention.
The first question is: "What is into_iter?"
into_iter comes from the IntoIterator trait:
pub trait IntoIterator
where
<Self::IntoIter as Iterator>::Item == Self::Item,
{
type Item;
type IntoIter: Iterator;
fn into_iter(self) -> Self::IntoIter;
}
You implement this trait when you want to specify how a particular type is to be converted into an iterator. Most notably, if a type implements IntoIterator it can be used in a for loop.
For example, Vec implements IntoIterator... thrice!
impl<T> IntoIterator for Vec<T>
impl<'a, T> IntoIterator for &'a Vec<T>
impl<'a, T> IntoIterator for &'a mut Vec<T>
Each variant is slightly different.
This one consumes the Vec and its iterator yields values (T directly):
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(mut self) -> IntoIter<T> { /* ... */ }
}
The other two take the vector by reference (don't be fooled by the signature of into_iter(self) because self is a reference in both cases) and their iterators will produce references to the elements inside Vec.
This one yields immutable references:
impl<'a, T> IntoIterator for &'a Vec<T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> { /* ... */ }
}
While this one yields mutable references:
impl<'a, T> IntoIterator for &'a mut Vec<T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> { /* ... */ }
}
So:
What is the difference between iter and into_iter?
into_iter is a generic method to obtain an iterator, whether this iterator yields values, immutable references or mutable references is context dependent and can sometimes be surprising.
iter and iter_mut are ad-hoc methods. Their return type is therefore independent of the context, and will conventionally be iterators yielding immutable references and mutable references, respectively.
The author of the Rust by Example post illustrates the surprise coming from the dependence on the context (i.e., the type) on which into_iter is called, and is also compounding the problem by using the fact that:
IntoIterator is not implemented for [T; N], only for &[T; N] and &mut [T; N] -- it will be for Rust 2021.
When a method is not implemented for a value, it is automatically searched for references to that value instead
which is very surprising for into_iter since all types (except [T; N]) implement it for all 3 variations (value and references).
Arrays implement IntoIterator (in such a surprising fashion) to make it possible to iterate over references to them in for loops.
As of Rust 1.51, it's possible for the array to implement an iterator that yields values (via array::IntoIter), but the existing implementation of IntoIterator that automatically references makes it hard to implement by-value iteration via IntoIterator.
I came here from Google seeking a simple answer which wasn't provided by the other answers. Here's that simple answer:
iter() iterates over the items by reference
iter_mut() iterates over the items, giving a mutable reference to each item
into_iter() iterates over the items, moving them into the new scope
So for x in my_vec { ... } is essentially equivalent to my_vec.into_iter().for_each(|x| ... ) - both move the elements of my_vec into the ... scope.
If you just need to look at the data, use iter, if you need to edit/mutate it, use iter_mut, and if you need to give it a new owner, use into_iter.
This was helpful: http://hermanradtke.com/2015/06/22/effectively-using-iterators-in-rust.html
I think there's something to clarify a bit more. Collection types, such as Vec<T> and VecDeque<T>, have into_iter method that yields T because they implement IntoIterator<Item=T>. There's nothing to stop us to create a type Foo<T> if which is iterated over, it will yield not T but another type U. That is, Foo<T> implements IntoIterator<Item=U>.
In fact, there are some examples in std: &Path implements IntoIterator<Item=&OsStr> and &UnixListener implements IntoIterator<Item=Result<UnixStream>>.
The difference between into_iter and iter
Back to the original question on the difference between into_iter and iter. Similar to what others have pointed out, the difference is that into_iter is a required method of IntoIterator which can yield any type specified in IntoIterator::Item. Typically, if a type implements IntoIterator<Item=I>, by convention it has also two ad-hoc methods: iter and iter_mut which yield &I and &mut I, respectively.
What it implies is that we can create a function that receives a type that has into_iter method (i.e. it is an iterable) by using a trait bound:
fn process_iterable<I: IntoIterator>(iterable: I) {
for item in iterable {
// ...
}
}
However, we can't* use a trait bound to require a type to have iter method or iter_mut method, because they're just conventions. We can say that into_iter is more widely useable than iter or iter_mut.
Alternatives to iter and iter_mut
Another interesting thing to observe is that iter is not the only way to get an iterator that yields &T. By convention (again), collection types SomeCollection<T> in std which have iter method also have their immutable reference types &SomeCollection<T> implement IntoIterator<Item=&T>. For example, &Vec<T> implements IntoIterator<Item=&T>, so it enables us to iterate over &Vec<T>:
let v = vec![1, 2];
// Below is equivalent to: `for item in v.iter() {`
for item in &v {
println!("{}", item);
}
If v.iter() is equivalent to &v in that both implement IntoIterator<Item=&T>, why then does Rust provide both? It's for ergonomics. In for loops, it's a bit more concise to use &v than v.iter(); but in other cases, v.iter() is a lot clearer than (&v).into_iter():
let v = vec![1, 2];
let a: Vec<i32> = v.iter().map(|x| x * x).collect();
// Although above and below are equivalent, above is a lot clearer than below.
let b: Vec<i32> = (&v).into_iter().map(|x| x * x).collect();
Similarly, in for loops, v.iter_mut() can be replaced with &mut v:
let mut v = vec![1, 2];
// Below is equivalent to: `for item in v.iter_mut() {`
for item in &mut v {
*item *= 2;
}
When to provide (implement) into_iter and iter methods for a type
If the type has only one “way” to be iterated over, we should implement both. However, if there are two ways or more it can be iterated over, we should instead provide an ad-hoc method for each way.
For example, String provides neither into_iter nor iter because there are two ways to iterate it: to iterate its representation in bytes or to iterate its representation in characters. Instead, it provides two methods: bytes for iterating the bytes and chars for iterating the characters, as alternatives to iter method.
* Well, technically we can do it by creating a trait. But then we need to impl that trait for each type we want to use. Meanwhile, many types in std already implement IntoIterator.
.into_iter() is not implemented for a array itself, but only &[]. Compare:
impl<'a, T> IntoIterator for &'a [T]
type Item = &'a T
with
impl<T> IntoIterator for Vec<T>
type Item = T
Since IntoIterator is defined only on &[T], the slice itself cannot be dropped the same way as Vec when you use the values. (values cannot be moved out)
Now, why that's the case is a different issues, and I'd like to learn myself. Speculating: array is the data itself, slice is only a view into it. In practice you cannot move the array as a value into another function, just pass a view of it, so you cannot consume it there either.
IntoIterator and Iterator are usually used like this.
We implement IntoIterator for structures that has an inner/nested value (or is behind a reference) that either implements Iterator or has an intermediate "Iter" structure.
For example, lets create a "new" data structure:
struct List<T>;
// Looks something like this:
// - List<T>(Option<Box<ListCell<T>>>)
// - ListCell<T> { value: T, next: List<T> }
We want this List<T> to be iterable, so this should be a good place to implement Iterator right? Yes, we could do that, but that would limit us in certain ways.
Instead we create an intermediate "iterable" structure and implement the Iterator trait:
// NOTE: I have removed all lifetimes to make it less messy.
struct ListIter<T> { cursor: &List<T> };
impl<T> Iterator for ListIter<T> {
type Item = &T;
fn next(&mut self) -> Option<Self::Item> {...}
}
So now we need to somehow connect List<T> and ListIter<T>. This can be done by implementing IntoIterator for List.
impl<T> IntoIterator for List<T> {
type Item = T;
type Iter = ListIter<Self::Item>;
fn into_iter(self) -> Self::Iter { ListIter { cursor: &self } }
}
IntoIterator can also be implemented multiple times for container struct if for example it contains different nested iterable fields or we have some higher kinded type situation.
Lets say we have a Collection<T>: IntoIterator trait that will be implemented by multiple data structures, e.g. List<T>, Vector<T> and Tree<T> that also have their respective Iter; ListIter<T>, VectorIter<T> and TreeIter<T>. But what does this actually mean when we go from generic to specific code?
fn wrapper<C>(value: C) where C: Collection<i32> {
let iter = value.into_iter() // But what iterator are we?
...
}
This code is not 100% correct, lifetimes and mutability support are omitted.

Resources