I'm trying to understand Haskell monads and wrote this test program, which compiles and works as expected:
divide :: Int -> Int -> Either String Int
divide _ 0 = Left "Divide by zero error
divide numerator denom = Right (numerator `div` denom)
processNumsMonadically :: Int -> Int -> Either String Int
processNumsMonadically n d = divide n d >>= \q -> return (q+1)
When I try using the word bind instead of the >>= operator in the latter function definition:
processNumsMonadically n d = bind (divide n d) (\q -> return (q+1))
I get the error:
Not in scope: 'bind'
What is the correct way to use the word bind?
This isn't a part of Prelude; it resides in Control.Monad.Extra, a part of monad-extras package.
However, you can call operators in prefix manner (like named functions) easily:
processNumsMonadically n d = (>>=) (divide n d) (\q -> return (q+1))
You could also just use do notation:
processNumsMonadically n d = do
q <- divide n d
return (q+1)
But while we're at it, I'd write using a Functor:
processNumsMonadically n d = fmap (+1) (divide n d)
or Applicative syntax:
processNumsMonadically n d = (+1) <$> divide n d
You could also lift the +1 to avoid the need for return and the lambda.
As a personal style remark, bind used as a word isn't idiomatic, and IMHO you shouldn't use it.
Related
Good morning everyone!
I'm using the following function as a fitting example of a function that needs to have a simple input and output. In this case it's a function that converts a number from decimal to binary form, as a list of digits no less, just because it is convenient later on.
I chose to write it like this, because even though a number goes in and a list comes out, another structure is needed as an intermediate step, that will hold the digits found so far and hold the quotient of the division, as input for the next step of the loop. I will clean up the necessary mess before outputing anything, though, by selecting the part of the structure that I'm interested in, in this case the second one , and not counters or other stuff, that I'm done with. (As I mentioned this is an example only, and it's not unusual in other cases to initialize the until loop with a triplet like (a,b,c), only to pick one of them at the end, as I see fit, with the help of additional function, like pickXof3.)
So there,
dec2Bin :: Int -> [Int]
dec2Bin num = snd $ until
(\(n,l) -> n <=0) -- test
(\(n,l) -> (fst $ division n, (snd $ division n):l)) -- main function
(num,[]) -- initialization
where division a = divMod a 2
I find it very convenient that Haskell, although lacking traditional for/while loops has a function like until, which reminds me very much of Mathematica's NextWhile, that I'm familiar with.
In the past I would write sth even uglier, like two functions, a "helper" one and a "main" one, like so
dec2BinHelper :: (Int,[Int]) -> (Int,[Int])
dec2BinHelper (n,l)
| n <= 0 = (n,l)
| otherwise = dec2BinHelper (fst $ division n, (snd $ division n):l)
where division a = divMod a 2
-- a function with the sole purpose to act as a front-end to the helper function, initializing its call parameters and picking up its output
dec2Bin :: Int -> [Int]
dec2Bin n = snd $ dec2BinHelper (n,[])
which I think is unnecessarily bloated.
Still, while the use of until allows me to define just one function, I get the feeling that it could be done even simpler/easier to read, perhaps in a way more fitting to functional programming. Is that so? How would you write such a function differently, while keeping the input and output at the absolutely essential values?
I strongly prefer your second solution. I'd start a clean-up with two things: use pattern matching, and use where to hide your helper functions. So:
dec2Bin :: Int -> [Int]
dec2Bin n = snd $ dec2BinHelper (n, []) where
dec2BinHelper (n, l)
| n <= 0 = (n, l)
| otherwise = dec2BinHelper (d, m:l)
where (d, m) = divMod n 2
Now, in the base case, you return a tuple; but then immediately call snd on it. Why not fuse the two?
dec2Bin :: Int -> [Int]
dec2Bin n = dec2BinHelper (n, []) where
dec2BinHelper (n, l)
| n <= 0 = l
| otherwise = dec2BinHelper (d, m:l)
where (d, m) = divMod n 2
There's no obvious reason why you should pass these arguments in a tuple, rather than as separate arguments, which is more idiomatic and saves some allocation/deallocation noise besides.
dec2Bin :: Int -> [Int]
dec2Bin n = dec2BinHelper n [] where
dec2BinHelper n l
| n <= 0 = l
| otherwise = dec2BinHelper d (m:l)
where (d, m) = divMod n 2
You can swap the arguments to dec2BinHelper and eta-reduce; that way, you will not be shadowing the definition of n.
dec2Bin :: Int -> [Int]
dec2Bin = dec2BinHelper [] where
dec2BinHelper l n
| n <= 0 = l
| otherwise = dec2BinHelper (m:l) d
where (d, m) = divMod n 2
Since you know that n > 0 in the recursive call, you can use the slightly faster quotRem in place of divMod. You could also consider using bitwise operations like (.&. 1) and shiftR 1; they may be even better, but you should benchmark to know for sure.
dec2Bin :: Int -> [Int]
dec2Bin = dec2BinHelper [] where
dec2BinHelper l n
| n <= 0 = l
| otherwise = dec2BinHelper (r:l) q
where (q, r) = quotRem n 2
When you don't have a descriptive name for your helper function, it's traditional to name it go or loop.
dec2Bin :: Int -> [Int]
dec2Bin = go [] where
go l n
| n <= 0 = l
| otherwise = go (r:l) q
where (q, r) = quotRem n 2
At this point, the two sides of the conditional are short enough that I'd be tempted to put them on their own line, though this is something of an aesthetic choice.
dec2Bin :: Int -> [Int]
dec2Bin = go [] where
go l n = if n <= 0 then l else go (r:l) q
where (q, r) = quotRem n 2
Finally, a comment on the name: the input isn't really in decimal in any meaningful sense. (Indeed, it's much more physically accurate to think of the input as already being in binary!) Perhaps int2Bin or something like that would be more accurate. Or let the type speak for itself, and just call it toBin.
toBin :: Int -> [Int]
toBin = go [] where
go l n = if n <= 0 then l else go (r:l) q
where (q, r) = quotRem n 2
At this point I'd consider this code quite idiomatic.
I have written the following code:
hosum :: (Int->Int)->(Int->Int)
hosum f 0 = 1
hosum f n = afunction f (-abs(n)) (abs(n))
afunction :: (Int->Int)->Int->Int->Int
afunction f a z
|a==z
= 0
|otherwise
= afunction f (a+1) z + afunction f a z
to find the sum of f(i) from -|n| to |n|.. Where is my mistake?
As pointed out in the comments, your code never calls the f function. There are several other things in your code that I don't understand:
hosum f 0 = 1. Why is it one for any f. Shouldn't it be f 0?
In afunction, why is the result 0 if a == z. If the range is inclusive, it should be zero only if a > z.
afunction in the otherwise case calls itself twice. Why doesn't it apply f to a and calls afunction f (a + 1) z only?
Now about a correct solution.
The easiest(and idiomatic) way to implement it is to use standard sum and map functions. It gives a one-liner(if we don't count type signature):
hosum :: (Int -> Int) -> Int -> Int
hosum f n = sum $ map f [-abs(n)..abs(n)]
In plain English, this function takes a list of all numbers from -abs(n) to abs(n), applies f to each of them and sums them up. That's exactly what the problem statement tells us to do.
TL:DR: Is there a way to do example 3 without passing an argument
I'm trying to understand the state monad in haskell (Control.Monad.State). I made an extremely simple function:
Example 1
example :: State Int Int
example = do
e <- get
put (e*5)
return e
This example works in ghci...
runState example 3
(3,15)
I modified it to be able to take arguments....
Example 2
example :: Int -> State Int Int
example n = do
e <- get
put (e*n)
return e
also works in ghci...
runState (example 5) 3
(3,15)
I made it recursive, counting the number of steps it takes for a computation to satisfy some condition
Example 3
example :: Int -> State Int Int
example n = do
e <- get
if (n /= 1)
then do
put (succ e)
example (next n)
else return (succ e)
next :: Int -> Int
next n
| even n = div n 2
| otherwise = 3*n+1
ghci
evalState (example 13) 0
10
My question is, is there a way to do the previous example without explicitly passing a value?
You can store n in the state along side of e, for example, something like:
example = do
(e,n) <- get
if n /= 1
then do put (succ e, next n); example
else return e
There is some overhead to using the State monad, so you should compare this with the alternatives.
For instance, a more Haskelly way of approaching this problem is compose list operations to compute the answer, e.g.:
collatz :: Int -> [Int]
collatz n = iterate next n
collatzLength n = length $ takeWhile (/= 1) $ collatz n
I am working with Haskell and maybe monads but I am a little bit confused with them
here is my code but I am getting error and I do not know how to improve my code.
doAdd :: Int -> Int -> Maybe Int
doAdd x y = do
result <- x + y
return result
Let's look critically at the type of the function that you're writing:
doAdd :: Int -> Int -> Maybe Int
The point of the Maybe monad is to work with types that are wrapped with a Maybe type constructor. In your case, the two Int arguments are just plain Ints, and the + function always produces an Int so there is no need for the monad.
If instead, your function took Maybe Int as its arguments, then you could use do notation to handle the Nothing case behind the scenes:
doAdd :: Maybe Int -> Maybe Int -> Maybe Int
doAdd mx my = do x <- mx
y <- my
return (x + y)
example1 = doAdd (Just 1) (Just 3) -- => Just 4
example2 = doAdd (Just 1) Nothing -- => Nothing
example3 = doAdd Nothing (Just 3) -- => Nothing
example4 = doAdd Nothing Nothing -- => Nothing
But we can extract a pattern from this: what you are doing, more generically, is taking a function ((+) :: Int -> Int -> Int) and adapting it to work in the case where the arguments it wants are "inside" a monad. We can abstract away from the specific function (+) and the specific monad (Maybe) and get this generic function:
liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
liftM2 f ma mb = do a <- ma
b <- mb
return (f a b)
Now with liftM2 you can write:
doAdd :: Maybe Int -> Maybe Int -> Maybe Int
doAdd = liftM2 (+)
The reason why I chose the name liftM2 is because this is actually a library function—you don't need to write it, you can import the Control.Monad module and you'll get it for free.
What would be a better example of using the Maybe monad? When you have an operation that, unlike +, can intrinsically can produce a Maybe result. One idea would be if you wanted to catch division by 0 mistakes. You could write a "safe" version of the div function:
-- | Returns `Nothing` if second argument is zero.
safeDiv :: Int -> Int -> Maybe Int
safeDiv _ 0 = Nothing
safeDiv x y = Just (x `div` y)
Now in this case the monad does become more useful:
-- | This function tests whether `x` is divisible by `y`. Returns `Nothing` if
-- division by zero.
divisibleBy :: Int -> Int -> Maybe Bool
divisibleBy x y = do z <- safeDiv x y
let x' = z * y
return (x == x')
Another more interesting monad example is if you have operations that return more than one value—for example, positive and negative square roots:
-- Compute both square roots of x.
allSqrt x = [sqrt x, -(sqrt x)]
-- Example: add the square roots of 5 to those of 7.
example = do x <- allSqrt 5
y <- allSqrt 7
return (x + y)
Or using liftM2 from above:
example = liftM2 (+) (allSqrt 5) (allSqrt 7)
So anyway, a good rule of thumb is this: never "pollute" a function with a monad type if it doesn't really need it. Your original doAdd—and even my rewritten version—are a violation of this rule of thumb, because what the function does is adding, but adding has nothing to do with Maybe—the Nothing handling is just a behavior that we add on top of the core function (+). The reason for this rule of thumb is that any function that does not use monads can be generically adapted to add the behavior of any monad you want, using utility functions like liftM2 (and many other similar utility functions).
On the other hand, safeDiv and allSqrt are examples where you can't really write the function you want without using Maybe or []; if you are dealing with a function like that, then monads are often a convenient abstraction for eliminating boilerplate code.
A better example might be
justPositive :: Num a => a -> Maybe a
justPositive x
| x <= 0 = Nothing
| otherwise = Just x
addPositives x y = do
x' <- justPositive x
y' <- justPositive y
return $ x' + y'
This will filter out any non-positive values passed into the function using do notation
That isn't how you'd write that code. The <- operator is for getting a value out of a monad. The result of x + y is just a number, not a monad wrapping a number.
Do notation is actually completely wasteful here. If you were bound and determined to write it that way, it would have to look like this:
doAdd x y = do
let result = x + y
return result
But that's just a longwinded version of this:
doAdd x y = return $ x + y
Which is in turn equivalent to
doAdd x y = Just $ x + y
Which is how you'd actually write something like this.
The use case you give doesn't justify do notation, but this is a more common use case- You can chain functions of this type together.
func::Int->Int->Maybe Int -- func would be a function like divide, which is undefined for division by zero
main = do
result1 <- func 1 2
result2 <- func 3 4
result3 <- func result1 result2
return result3
This is the whole point of monads anyway, chaining together functions of type a->m a.
When used this way, the Maybe monad acts much like exceptions in Java (you can use Either if you want to propagate a message up).
Here is my first Haskell program. What parts would you write in a better way?
-- Multiplication table
-- Returns n*n multiplication table in base b
import Text.Printf
import Data.List
import Data.Char
-- Returns n*n multiplication table in base b
mulTable :: Int -> Int -> String
mulTable n b = foldl (++) (verticalHeader n b w) (map (line n b w) [0..n])
where
lo = 2* (logBase (fromIntegral b) (fromIntegral n))
w = 1+fromInteger (floor lo)
verticalHeader :: Int -> Int -> Int -> String
verticalHeader n b w = (foldl (++) tableHeader columnHeaders)
++ "\n"
++ minusSignLine
++ "\n"
where
tableHeader = replicate (w+2) ' '
columnHeaders = map (horizontalHeader b w) [0..n]
minusSignLine = concat ( replicate ((w+1)* (n+2)) "-" )
horizontalHeader :: Int -> Int -> Int -> String
horizontalHeader b w i = format i b w
line :: Int -> Int -> Int -> Int -> String
line n b w y = (foldl (++) ((format y b w) ++ "|" )
(map (element b w y) [0..n])) ++ "\n"
element :: Int -> Int -> Int -> Int -> String
element b w y x = format (y * x) b w
toBase :: Int -> Int -> [Int]
toBase b v = toBase' [] v where
toBase' a 0 = a
toBase' a v = toBase' (r:a) q where (q,r) = v `divMod` b
toAlphaDigits :: [Int] -> String
toAlphaDigits = map convert where
convert n | n < 10 = chr (n + ord '0')
| otherwise = chr (n + ord 'a' - 10)
format :: Int -> Int -> Int -> String
format v b w = concat spaces ++ digits ++ " "
where
digits = if v == 0
then "0"
else toAlphaDigits ( toBase b v )
l = length digits
spaceCount = if (l > w) then 0 else (w-l)
spaces = replicate spaceCount " "
Here are some suggestions:
To make the tabularity of the computation more obvious, I would pass the list [0..n] to the line function rather than passing n.
I would further split out the computation of the horizontal and vertical axes so that they are passed as arguments to mulTable rather than computed there.
Haskell is higher-order, and almost none of the computation has to do with multiplication. So I would change the name of mulTable to binopTable and pass the actual multiplication in as a parameter.
Finally, the formatting of individual numbers is repetitious. Why not pass \x -> format x b w as a parameter, eliminating the need for b and w?
The net effect of the changes I am suggesting is that you build a general higher-order function for creating tables for binary operators. Its type becomes something like
binopTable :: (i -> String) -> (i -> i -> i) -> [i] -> [i] -> String
and you wind up with a much more reusable function—for example, Boolean truth tables should be a piece of cake.
Higher-order and reusable is the Haskell Way.
You don't use anything from import Text.Printf.
Stylistically, you use more parentheses than necessary. Haskellers tend to find code more readable when it's cleaned of extraneous stuff like that. Instead of something like h x = f (g x), write h = f . g.
Nothing here really requires Int; (Integral a) => a ought to do.
foldl (++) x xs == concat $ x : xs: I trust the built-in concat to work better than your implementation.
Also, you should prefer foldr when the function is lazy in its second argument, as (++) is – because Haskell is lazy, this reduces stack space (and also works on infinite lists).
Also, unwords and unlines are shortcuts for intercalate " " and concat . map (++ "\n") respectively, i.e. "join with spaces" and "join with newlines (plus trailing newline)"; you can replace a couple things by those.
Unless you use big numbers, w = length $ takeWhile (<= n) $ iterate (* b) 1 is probably faster. Or, in the case of a lazy programmer, let w = length $ toBase b n.
concat ( (replicate ((w+1)* (n+2)) "-" ) == replicate ((w+1) * (n+2)) '-' – not sure how you missed this one, you got it right just a couple lines up.
You do the same thing with concat spaces, too. However, wouldn't it be easier to actually use the Text.Printf import and write printf "%*s " w digits?
Norman Ramsey gave excellent high-level (design) suggestions; Below are some low-level ones:
First, consult with HLint. HLint is a friendly program that gives you rudimentary advice on how to improve your Haskell code!
In your case HLint gives 7 suggestions. (mostly about redundant brackets)
Modify your code according to HLint's suggestions until it likes what you feed it.
More HLint-like stuff:
concat (replicate i "-"). Why not replicate i '-'?
Consult with Hoogle whenever there is reason to believe that a function you need is already available in Haskell's libraries. Haskell comes with tons of useful functions so Hoogle should come in handy quite often.
Need to concatenate strings? Search for [String] -> String, and voila you found concat. Now go replace all those folds.
The previous search also suggested unlines. Actually, this even better suits your needs. It's magic!
Optional: pause and thank in your heart to Neil M for making Hoogle and HLint, and thank others for making other good stuff like Haskell, bridges, tennis balls, and sanitation.
Now, for every function that takes several arguments of the same type, make it clear which means what, by giving them descriptive names. This is better than comments, but you can still use both.
So
-- Returns n*n multiplication table in base b
mulTable :: Int -> Int -> String
mulTable n b =
becomes
mulTable :: Int -> Int -> String
mulTable size base =
To soften the extra characters blow of the previous suggestion: When a function is only used once, and is not very useful by itself, put it inside its caller's scope in its where clause, where it could use the callers' variables, saving you the need to pass everything to it.
So
line :: Int -> Int -> Int -> Int -> String
line n b w y =
concat
$ format y b w
: "|"
: map (element b w y) [0 .. n]
element :: Int -> Int -> Int -> Int -> String
element b w y x = format (y * x) b w
becomes
line :: Int -> Int -> Int -> Int -> String
line n b w y =
concat
$ format y b w
: "|"
: map element [0 .. n]
where
element x = format (y * x) b w
You can even move line into mulTable's where clause; imho, you should.
If you find a where clause nested inside another where clause troubling, then I suggest to change your indentation habits. My recommendation is to use consistent indentation of always 2 or always 4 spaces. Then you can easily see, everywhere, where the where in the other where is at. ok
Below's what it looks like (with a few other changes in style):
import Data.List
import Data.Char
mulTable :: Int -> Int -> String
mulTable size base =
unlines $
[ vertHeaders
, minusSignsLine
] ++ map line [0 .. size]
where
vertHeaders =
concat
$ replicate (cellWidth + 2) ' '
: map horizontalHeader [0 .. size]
horizontalHeader i = format i base cellWidth
minusSignsLine = replicate ((cellWidth + 1) * (size + 2)) '-'
cellWidth = length $ toBase base (size * size)
line y =
concat
$ format y base cellWidth
: "|"
: map element [0 .. size]
where
element x = format (y * x) base cellWidth
toBase :: Integral i => i -> i -> [i]
toBase base
= reverse
. map (`mod` base)
. takeWhile (> 0)
. iterate (`div` base)
toAlphaDigit :: Int -> Char
toAlphaDigit n
| n < 10 = chr (n + ord '0')
| otherwise = chr (n + ord 'a' - 10)
format :: Int -> Int -> Int -> String
format v b w =
spaces ++ digits ++ " "
where
digits
| v == 0 = "0"
| otherwise = map toAlphaDigit (toBase b v)
spaces = replicate (w - length digits) ' '
0) add a main function :-) at least rudimentary
import System.Environment (getArgs)
import Control.Monad (liftM)
main :: IO ()
main = do
args <- liftM (map read) $ getArgs
case args of
(n:b:_) -> putStrLn $ mulTable n b
_ -> putStrLn "usage: nntable n base"
1) run ghc or runhaskell with -Wall; run through hlint.
While hlint doesn't suggest anything special here (only some redundant brackets), ghc will tell you that you don't actually need Text.Printf here...
2) try running it with base = 1 or base = 0 or base = -1
If you want multiline comments use:
{- A multiline
comment -}
Also, never use foldl, use foldl' instead, in cases where you are dealing with large lists which must be folded. It is more memory efficient.
A brief comments saying what each function does, its arguments and return value, is always good. I had to read the code pretty carefully to fully make sense of it.
Some would say if you do that, explicit type signatures may not be required. That's an aesthetic question, I don't have a strong opinion on it.
One minor caveat: if you do remove the type signatures, you'll automatically get the polymorphic Integral support ephemient mentioned, but you will still need one around toAlphaDigits because of the infamous "monomorphism restriction."