send data from raw socket to udp or tcp socket - linux

I am trying to learn something about sockets in Linux. I have small development board something like raspberry Pi with Linux running inside. Unfortunatly it doesn't have ethernet or usb port.
I have created a dummy network interface and used it like default gateway. I have written a small program using raw sockets listening on dummy interface (then sends all packets over serial line to computer where is program which send this packets to the internet and recieves answers a sends them back).
My problem is when i am trying to ping some public IP address i can see in tcpdump the ICMP requests and responses in both computer and development board. But the ping looks like it does recieve nothing.
I have tryed to use loopback interface instead of dummy interface, but in this case the pings gets looped and the device becomes unresponsible in a while :). But the ping did recieve ICMP response, and TCP connection didn't work.
I also have tryed to use 2 dummy interfaces and create bridge.
I would be very grateful for any advices.

Related

I am working with vlan, I have to write a server which used vlan interface to accept the packet?

Hints about working with VLAN? I have to write a client-server program, where the client will send a packet through eth0 and the server will receive the packet on VLAN, and to send it to a concerned VLAN client should parse on which command line VLAN will receive it?
Usually there is nothing to do in the application to work with a VLAN. The VLAN is realized using a virtual network interface with its own IP address. From the perspective of the application this is not different from a real network interface with own IP address. The OS will take care about routing and encapsulation of packets and there is nothing to do from the application itself.

how to send/inject packet into local network interface (linux)

I am working on a C program on Linux (kernel 2.6.18). I need to send/inject IP packets (e.g., over a socket) in my Linux systems, but make the same Linux "think" that these packets are incoming from another host. I creat a datalink socket and use faked source mac/ip for the packets sent over this socket. The destination mac/ip are set to the ones in my local Linux. However, whether I send these packets in a user-space program or in a kernel module, my local Linux just doesn't think these packets are coming from outside. For example, if I create a datalink socket to send an ICMP request destined to my local Linux, I expect my local Linux to think this ICMP request coming from outside, and would respond with an ICMP reply, but my local Linux does not do so. (However, with the same program I can send a faked ICMP request to another host, and that host does respond an ICMP reply.)
I did some research on this topic online, and it seems all related solution suggest using TAP. But as this VirtualBox article says:
... TAP is no longer necessary on Linux with bridged networking, ...
I am very interested to know how this is possible. Thanks.

Minimum requirements for custom networking stack to send UDP packets?

(edit: solved -- see below)
This is my situation:
TL-MR3020 -----ethernet----- mbed
OpenWRT C/C++ custom networking stack
192.168.2.1 192.168.2.16
TL-MR3020 is a Linux embedded router
mbed is an ARM microcontroller.
On the network I just want them to exchange messages using UDP packets on port 2225. In particular, TL-MR3020 has to periodically send packets every second to 192.168.2.16:2225, while mbed has to periodically send packets every 50ms to 192.168.2.1:2225.
Everything was good untill I removed the network stack library from mbed (lwIP, not so lightweight for me) and written a new minimal stack.
My new stacks sends 5 gratuitous ARP reply just after the ethernet link gets up, then starts sending and receiving udp packets.
Now TL-MR3020 doesn't receive any UDP packet. In particular, with ifconfig I can see packets coming, but my application can't get them.
Also, if I connect my laptop instead of the TL-MR3020, I can see the UDP packets coming, using Wireshark. There's nothing wrong, except done for my application.
I have a node.js script that has to receive the packets, but it doesn't receive nothing, but if I send UDP packets from local to local, the script receives them.
I think that my application is OK also because neither SOCAT can receive the UDP packets using socat - UDP-LISTEN:2225.
I've already checked on TL-MR3020:
arp table has the correct ip-mac assiciation
destination MAC address matches the incoming interface
destination IP address matches the incoming interface
IP checksum: wireshark says good=false, bad=false
UDP checksum: wireshark says good=false, bad=false
So, I'm asking... what are the minimum requirements for a custom networking stack to send UDP packets?
SOLVED:
You need a good checksum in the IP header.
UDP checksum, my case, can be set to zero.
tcpdump is very helpful (thanks to AndrewMcDonnell)

How create a virtual io device in Linux that proxies data to real device?

I have an interesting problem. I am working on an embedded box with multiple instances of Linux running each on an ARM processor. They are connected over internal 1GBps network. I have a serial port device node attached to processor A (Lets say Linux-A running on it). I have a program running on processor B (Lets say on Linux-B) access the serial port device as if it is attached to Linux-B locally.
My program invokes term i/o type api calls on device node to control tty echo, character mode input. What I am wondering is if there is a way to create a virtual serial device that is available on Linux-B somehow talking to real serial device on Linux-A over internal network.
I am thinking something along the lines of:
Linux-B has /dev/ttyvirtual. Anything that gets written to it gets transported over network socket to Linux-A serialserver. The serial server exrcises the api calls on real device lets say /dev/ttys0.
Any data waiting on ttys0 gets transported back to /dev/ttyvirtual.
What are all the things involved to get this done fast?
Thanks
Videoguy
Update:
I found a discussion at
http://fixunix.com/bsd/261068-network-socket-serial-port-question.html with great pointers.
Another useful link is http://blog.philippklaus.de/2011/08/make-rs232-serial-devices-accessible-via-ethernet/
Take a look at openpty(3). This lets you create a pseudo-TTY (like /dev/pts/0, the sort that ssh connections use), which will respond as a normal TTY would, but give you direct programmatic control over the connections.
This way you can host a serial device (eg. /dev/pts/5) that you forward data between a network connection, and then other apps can perform serial operations on it without knowing about the underlying network bridge.
I ended up using socat
Examples can be found here: socat examples
You socat back to back on both the machines. One listens on a tcp port and forwards data to local virtual port or pty. The socat on other box uses real device as input and forwards any data to tcp port.

howto make locally terminated tcp connections go through prerouting and postrouting?

I am developing an application that filters and mangles packets using netfilter queue's. It's rather complicated and needs to perform well so I would like to automate some rigorous testing. To do this I need to be to be able to route some TCP connections through my system, however, I don't want to have to rely on two other machines to act as client and server. I would prefer to run a local client that sends data and a local server that checks the mangled result.
The problem is that my application needs to intercept packets at the PREROUTING stage and so packets generated by the local client can't just be routed to the loopback interface.
So I need some way to inject packets before the prerouting stage and intercept them back after postrouting. If I could somehow use stream sockets to send and receive the data that would be great!
The most straightforward way I can think of doing this is to use a tun device. The tun device allows you to inject packets from userspace that appear to arrive through the tun interface. You could either write code to create and manipulate the tun interface yourself, or you can make use of an application like OpenVPN that already does this. With OpenVPN it would be easy: no special raw sockets or anything: you just send it IP packets encapsulated in UDP and it will make them arrive through a tun interface.
I've been thinking a bit about this and using the tun devices my client and server test applications should be able to use plain linux sockets. I will explain how this can work by describing the path of a packet sent by the test client.
Prerequisites:
a) Two tun devices each providing access to a distinct subnetwork
b) routing table was set up to route traffic to the correct tun device
1) the client sends a packet to an address in the tun1 subnetwork
2) the app attached to tun1 (tun1app) will translate the dst address of the packet to an address in tun2 subnetwork and the source address to an address in the tun1 subnetwork different from the address of the tun1 interface
3) tun1app will send the modified packet back out
4) after routing tun2app will receive the packet and translate the destination address to the tun2 interface and the source address to an address in the tun2 network different from the interface address
5) tun2app will send it back out and the server will receive the packet assuming the destination port is the one the server is listening on
Packets from the server will follow the inverse path.
This seems like the core idea of a very useful tool. Does anyone know of a tool that is able to do this?
All connections from-and-to localhost itself do go over PREROUTING and POSTROUTING. Whoever tells something else is mistaken. (You can verify that with ip6tables -t raw -I OUTPUT -j TRACE, and you will see that it passes through OUTPUT-POSTROUTING-PREROUTING-INPUT when, for example, you ping6 ::1 yourself.)

Resources