Simplest Possible Device to Emulate - emulation

I'm wondering if someone could recommend an extremely simple device that I could emulate as a learning project. I've found a number of guides that focus on emulating the CHIP-8 language, but I want to actually emulate hardware. Something simpler than the NES would be ideal. Thank you!

There's a real cpu of around a thousand gates called Zylin that's used when smallness or simplicity is the top of the list. The upside is that there's actually a GCC backend for it.

Related

Measuring the scaling behaviour of multithreaded applications

I am working on an application which supports many-core MIMD architectures (on consumer/desk-computers). I am currently worrying about the scaling behaviour of the application. Its designed to be massively parallel and addressing next-gen hardware. That's actually my problem. Does anyone know any software to simulate/emulate many-core MIMD Processors with >16 cores on a machine-code level? I've already implemented a software based thread sheduler with the ability to simulate multiple processors, by simple timing techniques.
I was curious if there's any software which could do this kind of simulation on a lower level preferably on an assembly language level to get better results. I want to emphasize once again that I'm only interested in MIMD Architectures. I know about OpenCL/CUDA/GPGPU but thats not what I'm looking for.
Any help is appreciated and thanks in advance for any answers.
You will rarely find all-purpose testing tools that are ALSO able to target very narrow (high-performance) corners - for a simple reason: the overhead of the "general-purpose" object will defeat that goal in the first place.
This is especially true with paralelism where locality and scheduling have a huge impact.
All this to say that I am affraid that you will have to write your own testing tool to target your exact usage pattern.
That's the price to pay for relevance.
If you are writing your application in C/C++, I might be able to help you out.
My company has created a tool that will take any C or C++ code and simulate its run-time behavior at bytecode level to find parallelization opportunities. The tool highlights parallelization opportunities and shows how parallel tasks behave.
The only mismatch is that our tool will also provide refactoring recipes to actually get to parallelization, whereas it sounds like you already have that.

I want to do a project on sound programming, but I don't know where to start

At my high school we can take a class where we basically learn about a subject on our own for a semester. I was thinking that I want to learn about "sound programming," but I realized that I have no idea what that entails. I'm interested in learning about, for example, how a synthesizer works, how I could write a VSTi, and how sound works in computer science. Is this a feasible subject? Are there any good tutorials out there for somebody completely new to this? Any tips or suggestions would be greatly appreciated.
Edit: This is the sort of thing that I'm interested in.
VST plugins are normally written with C++. But it's possible to use other languages as well. Building a VST plugin with C++ is quite an involved project. Without pre-existing experience it's probably too much for a school project. Additionally you'll probably spend as much or more time implementing the VST part and GUI as you will actual sound programming.
However there are a other ways to create a VST plugin and still get your hands dirty writing code.
SynthEdit is a modular environment for creating synthesizers and effects. Modules such as oscillators, envelopes etc are connected visually with wires. Patches can be exported as VST plugins. SynthEdit allows additional modules to be programmed with C++.
SynthMaker is another option similar to SynthEdit. It features a code module which allows you write DSP code without the difficultly of compiling modules in another language.
The advantage of using SynthEdit or SynthMaker in your situation is that you can focus your programming efforts on a particular area, such as creating a filter or oscillator module. SynthEdit/SynthMaker can then handle the other areas (GUI, voice logic, etc).
Using SynthEdit or SynthMaker will also allow you to prototype ideas quicker. So you will have more time to experiment with different synthesizer or effect architectures before settling on something to complete for your school project.
DSP theory can be quite involved and maths heavy but that alone shouldn't put you off. Depending on what you want to do, a basic understanding of digital audio principles and algebra level maths may be enough to take you a surprising long way.
You might try looking for resources on DSP (Digital Signal Processing) and/or Audio Signal Processing. The programming itself (unless you're looking for an existing audio library) will likely be more math intensive than programming intensive, so it might be a good fit for a query at math.stackexchange.com.
There's a very flexible and powerful audio application called Plogue Bidule. You could use it to learn about audio processing and synthesis, by creating your own 'bidules' or groups using low-level math and logic building blocks. There's an existing user community, and I've had a hard time finding a limit to what it can do. You're not going to be doing any code with this tool, but it's great for performance and learning about audio processing and synthesis fundamentals.

Which Linux RTOS solution should I choose?

I'm preparing myself to build RTOS solution on top of Linux this going to work on embedded device. I've done some investigation by myself but still I'm a bit confused.
Those are my criteria:
Easy to run on Samsung s3c2440 ARM9 machine
Open Source
Works together with Linux
Good community support
I've seen RTLinux and Xenomai. Xenomai looks more like thing for me, but still I'm confused.
Any good advice, pro's and cons?
I have not done any work with Real Time systems, but I know if this and this. I hope it helps or that it can at least put you in the right track.
The question is do you really need hard RTOS?
You may be able to get away with something like uClinux http://www.uclinux.org/
Check out montavista if you need commercial support.
If you have decided on a processor, I suggest you find a development board or kit and use the recommended operating environment. Including development tools and OS.
With the aid of FCSE enabled by Xenomai, Linux with the real-time extension can work pretty weel on ARM9 based boards like S3C2440.
This presentation covers some concepts: http://www.slideshare.net/jserv/realtime-linux
If you need free and absolutely stable out of the box with the lowest latencies, consider something like RTEMS (not Linux based, but does provide POSIX functions).
If you can afford it and want something absolutely stable out of the box with very low latencies and have a general purpose OS with all the bells and whistles, check out QNX - its got the same GNU userland/toolchains you're used to and is POSIX compliant.
RTLinux is best avoided - very buggy. Xenomai/RTAI can have decent success, although it has more limitations than QNX. Everything else is going to bleed you for large sums of money so you might as well choose the best option :-).

Nested struct viewer for Linux Kernel

I am in the process of tackling the Linux Kernel learning curve and trying to get my head round the information stored in nested struct specifically to resolve a ALSA driver issue.
Hence, I am spending a lot of my time in the source code tracing through structures that have pointers to other structures that in turn have pointers to yet other structures...by which time my head has become so full that I start to loose track of the big picture!
Can anybody point me at either a tool or a website (along the lines of the highly usful Linux Cross Reference http://lxr.linux.no/) that will allow me to, ideally graphically, expand down through the nested struct of the source code?
At the moment we are developing for an Embedded PowerPC in Eclipse CDT version 4.0 but wouldn't be opposed to switching tool chains.
Regards
KermitG
This may sound old fashion but I've found that tracing through data structures with a pencil and paper helps you reverse engineer the code better than tools that automagically do this. So, my recommendation is that you draw them yourself so that you don't have to keep it all in your head. Once you've done this your learning curve becomes a lot less steep.
Just a copy/paste of my comment, so that this question has at least 1 answer.
Or alternatively you could use something like Doxygen to generate the diagrams for you. It's worth noting a lot of the DocBook books get their structures directly from annotated code.
I am currently using Kdevelop4 (svn version) to walk through the Linux kernel. The navigation capabilities are great, but it takes a big while to parse it (just give it the directories you need, omitting all drivers you are not interested in for example) and is still a little bit crashy.
Once the stability improves and the parser can cache previously parsed data, I think this will become the most convenient way to walk through the kernel.

How do emulators work and how are they written? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Closed 9 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
How do emulators work? When I see NES/SNES or C64 emulators, it astounds me.
Do you have to emulate the processor of those machines by interpreting its particular assembly instructions? What else goes into it? How are they typically designed?
Can you give any advice for someone interested in writing an emulator (particularly a game system)?
Emulation is a multi-faceted area. Here are the basic ideas and functional components. I'm going to break it into pieces and then fill in the details via edits. Many of the things I'm going to describe will require knowledge of the inner workings of processors -- assembly knowledge is necessary. If I'm a bit too vague on certain things, please ask questions so I can continue to improve this answer.
Basic idea:
Emulation works by handling the behavior of the processor and the individual components. You build each individual piece of the system and then connect the pieces much like wires do in hardware.
Processor emulation:
There are three ways of handling processor emulation:
Interpretation
Dynamic recompilation
Static recompilation
With all of these paths, you have the same overall goal: execute a piece of code to modify processor state and interact with 'hardware'. Processor state is a conglomeration of the processor registers, interrupt handlers, etc for a given processor target. For the 6502, you'd have a number of 8-bit integers representing registers: A, X, Y, P, and S; you'd also have a 16-bit PC register.
With interpretation, you start at the IP (instruction pointer -- also called PC, program counter) and read the instruction from memory. Your code parses this instruction and uses this information to alter processor state as specified by your processor. The core problem with interpretation is that it's very slow; each time you handle a given instruction, you have to decode it and perform the requisite operation.
With dynamic recompilation, you iterate over the code much like interpretation, but instead of just executing opcodes, you build up a list of operations. Once you reach a branch instruction, you compile this list of operations to machine code for your host platform, then you cache this compiled code and execute it. Then when you hit a given instruction group again, you only have to execute the code from the cache. (BTW, most people don't actually make a list of instructions but compile them to machine code on the fly -- this makes it more difficult to optimize, but that's out of the scope of this answer, unless enough people are interested)
With static recompilation, you do the same as in dynamic recompilation, but you follow branches. You end up building a chunk of code that represents all of the code in the program, which can then be executed with no further interference. This would be a great mechanism if it weren't for the following problems:
Code that isn't in the program to begin with (e.g. compressed, encrypted, generated/modified at runtime, etc) won't be recompiled, so it won't run
It's been proven that finding all the code in a given binary is equivalent to the Halting problem
These combine to make static recompilation completely infeasible in 99% of cases. For more information, Michael Steil has done some great research into static recompilation -- the best I've seen.
The other side to processor emulation is the way in which you interact with hardware. This really has two sides:
Processor timing
Interrupt handling
Processor timing:
Certain platforms -- especially older consoles like the NES, SNES, etc -- require your emulator to have strict timing to be completely compatible. With the NES, you have the PPU (pixel processing unit) which requires that the CPU put pixels into its memory at precise moments. If you use interpretation, you can easily count cycles and emulate proper timing; with dynamic/static recompilation, things are a /lot/ more complex.
Interrupt handling:
Interrupts are the primary mechanism that the CPU communicates with hardware. Generally, your hardware components will tell the CPU what interrupts it cares about. This is pretty straightforward -- when your code throws a given interrupt, you look at the interrupt handler table and call the proper callback.
Hardware emulation:
There are two sides to emulating a given hardware device:
Emulating the functionality of the device
Emulating the actual device interfaces
Take the case of a hard-drive. The functionality is emulated by creating the backing storage, read/write/format routines, etc. This part is generally very straightforward.
The actual interface of the device is a bit more complex. This is generally some combination of memory mapped registers (e.g. parts of memory that the device watches for changes to do signaling) and interrupts. For a hard-drive, you may have a memory mapped area where you place read commands, writes, etc, then read this data back.
I'd go into more detail, but there are a million ways you can go with it. If you have any specific questions here, feel free to ask and I'll add the info.
Resources:
I think I've given a pretty good intro here, but there are a ton of additional areas. I'm more than happy to help with any questions; I've been very vague in most of this simply due to the immense complexity.
Obligatory Wikipedia links:
Emulator
Dynamic recompilation
General emulation resources:
Zophar -- This is where I got my start with emulation, first downloading emulators and eventually plundering their immense archives of documentation. This is the absolute best resource you can possibly have.
NGEmu -- Not many direct resources, but their forums are unbeatable.
RomHacking.net -- The documents section contains resources regarding machine architecture for popular consoles
Emulator projects to reference:
IronBabel -- This is an emulation platform for .NET, written in Nemerle and recompiles code to C# on the fly. Disclaimer: This is my project, so pardon the shameless plug.
BSnes -- An awesome SNES emulator with the goal of cycle-perfect accuracy.
MAME -- The arcade emulator. Great reference.
6502asm.com -- This is a JavaScript 6502 emulator with a cool little forum.
dynarec'd 6502asm -- This is a little hack I did over a day or two. I took the existing emulator from 6502asm.com and changed it to dynamically recompile the code to JavaScript for massive speed increases.
Processor recompilation references:
The research into static recompilation done by Michael Steil (referenced above) culminated in this paper and you can find source and such here.
Addendum:
It's been well over a year since this answer was submitted and with all the attention it's been getting, I figured it's time to update some things.
Perhaps the most exciting thing in emulation right now is libcpu, started by the aforementioned Michael Steil. It's a library intended to support a large number of CPU cores, which use LLVM for recompilation (static and dynamic!). It's got huge potential, and I think it'll do great things for emulation.
emu-docs has also been brought to my attention, which houses a great repository of system documentation, which is very useful for emulation purposes. I haven't spent much time there, but it looks like they have a lot of great resources.
I'm glad this post has been helpful, and I'm hoping I can get off my arse and finish up my book on the subject by the end of the year/early next year.
A guy named Victor Moya del Barrio wrote his thesis on this topic. A lot of good information on 152 pages. You can download the PDF here.
If you don't want to register with scribd, you can google for the PDF title, "Study of the techniques for emulation programming". There are a couple of different sources for the PDF.
Emulation may seem daunting but is actually quite easier than simulating.
Any processor typically has a well-written specification that describes states, interactions, etc.
If you did not care about performance at all, then you could easily emulate most older processors using very elegant object oriented programs. For example, an X86 processor would need something to maintain the state of registers (easy), something to maintain the state of memory (easy), and something that would take each incoming command and apply it to the current state of the machine. If you really wanted accuracy, you would also emulate memory translations, caching, etc., but that is doable.
In fact, many microchip and CPU manufacturers test programs against an emulator of the chip and then against the chip itself, which helps them find out if there are issues in the specifications of the chip, or in the actual implementation of the chip in hardware. For example, it is possible to write a chip specification that would result in deadlocks, and when a deadline occurs in the hardware it's important to see if it could be reproduced in the specification since that indicates a greater problem than something in the chip implementation.
Of course, emulators for video games usually care about performance so they don't use naive implementations, and they also include code that interfaces with the host system's OS, for example to use drawing and sound.
Considering the very slow performance of old video games (NES/SNES, etc.), emulation is quite easy on modern systems. In fact, it's even more amazing that you could just download a set of every SNES game ever or any Atari 2600 game ever, considering that when these systems were popular having free access to every cartridge would have been a dream come true.
I know that this question is a bit old, but I would like to add something to the discussion. Most of the answers here center around emulators interpreting the machine instructions of the systems they emulate.
However, there is a very well-known exception to this called "UltraHLE" (WIKIpedia article). UltraHLE, one of the most famous emulators ever created, emulated commercial Nintendo 64 games (with decent performance on home computers) at a time when it was widely considered impossible to do so. As a matter of fact, Nintendo was still producing new titles for the Nintendo 64 when UltraHLE was created!
For the first time, I saw articles about emulators in print magazines where before, I had only seen them discussed on the web.
The concept of UltraHLE was to make possible the impossible by emulating C library calls instead of machine level calls.
Something worth taking a look at is Imran Nazar's attempt at writing a Gameboy emulator in JavaScript.
Having created my own emulator of the BBC Microcomputer of the 80s (type VBeeb into Google), there are a number of things to know.
You're not emulating the real thing as such, that would be a replica. Instead, you're emulating State. A good example is a calculator, the real thing has buttons, screen, case etc. But to emulate a calculator you only need to emulate whether buttons are up or down, which segments of LCD are on, etc. Basically, a set of numbers representing all the possible combinations of things that can change in a calculator.
You only need the interface of the emulator to appear and behave like the real thing. The more convincing this is the closer the emulation is. What goes on behind the scenes can be anything you like. But, for ease of writing an emulator, there is a mental mapping that happens between the real system, i.e. chips, displays, keyboards, circuit boards, and the abstract computer code.
To emulate a computer system, it's easiest to break it up into smaller chunks and emulate those chunks individually. Then string the whole lot together for the finished product. Much like a set of black boxes with inputs and outputs, which lends itself beautifully to object oriented programming. You can further subdivide these chunks to make life easier.
Practically speaking, you're generally looking to write for speed and fidelity of emulation. This is because software on the target system will (may) run more slowly than the original hardware on the source system. That may constrain the choice of programming language, compilers, target system etc.
Further to that you have to circumscribe what you're prepared to emulate, for example its not necessary to emulate the voltage state of transistors in a microprocessor, but its probably necessary to emulate the state of the register set of the microprocessor.
Generally speaking the smaller the level of detail of emulation, the more fidelity you'll get to the original system.
Finally, information for older systems may be incomplete or non-existent. So getting hold of original equipment is essential, or at least prising apart another good emulator that someone else has written!
Yes, you have to interpret the whole binary machine code mess "by hand". Not only that, most of the time you also have to simulate some exotic hardware that doesn't have an equivalent on the target machine.
The simple approach is to interpret the instructions one-by-one. That works well, but it's slow. A faster approach is recompilation - translating the source machine code to target machine code. This is more complicated, as most instructions will not map one-to-one. Instead you will have to make elaborate work-arounds that involve additional code. But in the end it's much faster. Most modern emulators do this.
When you develop an emulator you are interpreting the processor assembly that the system is working on (Z80, 8080, PS CPU, etc.).
You also need to emulate all peripherals that the system has (video output, controller).
You should start writing emulators for the simpe systems like the good old Game Boy (that use a Z80 processor, am I not not mistaking) OR for C64.
Emulator are very hard to create since there are many hacks (as in unusual
effects), timing issues, etc that you need to simulate.
For an example of this, see http://queue.acm.org/detail.cfm?id=1755886.
That will also show you why you ‘need’ a multi-GHz CPU for emulating a 1MHz one.
Also check out Darek Mihocka's Emulators.com for great advice on instruction-level optimization for JITs, and many other goodies on building efficient emulators.
I've never done anything so fancy as to emulate a game console but I did take a course once where the assignment was to write an emulator for the machine described in Andrew Tanenbaums Structured Computer Organization. That was fun an gave me a lot of aha moments. You might want to pick that book up before diving in to writing a real emulator.
Advice on emulating a real system or your own thing?
I can say that emulators work by emulating the ENTIRE hardware. Maybe not down to the circuit (as moving bits around like the HW would do. Moving the byte is the end result so copying the byte is fine). Emulator are very hard to create since there are many hacks (as in unusual effects), timing issues, etc that you need to simulate. If one (input) piece is wrong the entire system can do down or at best have a bug/glitch.
The Shared Source Device Emulator contains buildable source code to a PocketPC/Smartphone emulator (Requires Visual Studio, runs on Windows). I worked on V1 and V2 of the binary release.
It tackles many emulation issues:
- efficient address translation from guest virtual to guest physical to host virtual
- JIT compilation of guest code
- simulation of peripheral devices such as network adapters, touchscreen and audio
- UI integration, for host keyboard and mouse
- save/restore of state, for simulation of resume from low-power mode
To add the answer provided by #Cody Brocious
In the context of virtualization where you are emulating a new system(CPU , I/O etc ) to a virtual machine we can see the following categories of emulators.
Interpretation: bochs is an example of interpreter , it is a x86 PC emulator,it takes each instruction from guest system translates it in another set of instruction( of the host ISA) to produce the intended effect.Yes it is very slow , it doesn't cache anything so every instruction goes through the same cycle.
Dynamic emalator: Qemu is a dynamic emulator. It does on the fly translation of guest instruction also caches results.The best part is that executes as many instructions as possible directly on the host system so that emulation is faster. Also as mentioned by Cody, it divides the code into blocks ( 1 single flow of execution).
Static emulator: As far I know there are no static emulator that can be helpful in virtualization.
How I would start emulation.
1.Get books based around low level programming, you'll need it for the "pretend" operating system of the Nintendo...game boy...
2.Get books on emulation specifically, and maybe os development. (you won't be making an os, but the closest to it.
3.look at some open source emulators, especially ones of the system you want to make an emulator for.
4.copy snippets of the more complex code into your IDE/compliler. This will save you writing out long code. This is what I do for os development, use a district of linux
I wrote an article about emulating the Chip-8 system in JavaScript.
It's a great place to start as the system isn't very complicated, but you still learn how opcodes, the stack, registers, etc work.
I will be writing a longer guide soon for the NES.

Resources