Question about using Aggregates (not AR) in Domain Driven Design.
Using the familiar: Order (aggregate root [AR]) and OrderLine (aggregate member [AM]) works for an example. If one assumes that the Orders are persisted, then how does one, properly from a DDD perspective, operate on the aggregate members?
For instance, can I search (find operation) for all the OrderLines of a given item? What is the correct way to do that? If I return those as Value Objects, that just seems wrong, in reality they are persisted Domain Objects. Furthermore, I might need to be able to get the Order from one of them. Yet, if I return them (from the Repository layer) as Entity objects, then I seem to have violated the Aggregate Root canonical rule.
I think I have the answer to my question. If I now follow correctly, it's completely okay to know about an entity below the aggregate root. However, one can not store/view/reference an ID to it. But you CAN reference the AR Id.
Thus, I can have say: OrderRepository.findOrderLines(withProductId) method that returns a list of OrderLine objects less their Id, but having the Order Id (AR ID) on those objects is fine.
Please comment if this is off-base.
Related
I have some Entities and I am trying to follow Domain Driven Design practices to identify Aggregates. I somehow cant do this because I either break the rule of Entities not being allowed to reference non-root Entities of other Aggregates, or I cant form Aggregates at all.
I have the following Entities: Organisation, JobOffer, Candidate, and JobApplication.
An Organisation creates JobOffers but may only have a limited amount of active JobOffers.
A Candidate creates JobApplications but may only have a limited amount of active JobApplications.
A JobApplication references a JobOffer that it is meant for.
Based on that I have to know how many JobOffers an Organisation has before I can create a new one (enforcing limits), I assume Organisation should be an Root-Entity that owns JobOffers. The same applies to Candidates and JobApplications. Now I have two Aggregates: Organisation with JobOffers and Candidate with JobApplications. But... I need to reference JobOffer from JobApplication... and that breaks the rule that I cant reference non-Root-Entities.
I have looked for and found similar questions on this forum but I somehow still cant figure it out, so sorry in advance - I appreciate any help.
I general, you should avoid holding object references to other aggregates but rather reference other aggregates by id. In some cases it can be valid to reference some entity within in another aggregate, but again this should be done via id as well.
If you go this way you should reference a composite id. Aggregates are meant to depict logical boundaries and also transactional boundaries. Child entity ids which are modelled as part of the aggregate only need to be unique inside the boundaries of that aggregate. This makes it a lot easier to focus on stuff just inside those boundaries when performing actions in your system. Even if you are using UUIDs (or GUIDs), if you really need to reference a child entity of another aggregate - let's say you have good reasons for that - you should model the id graph via the aggregate root which means always knowing the id of the other aggregate in combination with the id of the entity you are interested in. That means referencing a composite id.
But: whenever I think I need to reference a child entity of another aggregate root at first I investigate this more deeply. This would mean that this child entity might be important as a stand-alone entity as well.
Did I miss to discover another aggregate root?
In your case, looking at your domain model diagram, I suspect JobOffer should be an aggregate on its own. Of course I don't know your domain but I can at least guess that there might be some transactions performed in your system allowing to mutate job offers on its own without requiring to consider organization specific business invariants. If this is the case, you should rethink the domain model and consider making JobOffer an aggregate root on its own. In this case your initial problem get's resolved automatically. Also note that modelling job offers as aggregates can make actions performed on organizations simpler as well as you do not need to load all the job offers for that organization when loading the organization aggregate. This might of course not be relevant in your case and really depends on the maximum amount of job offers for an organization.
So I think, depending on your business requirements and domain logic invariants I would recommd one of the folllwing two options:
Reference the foreign child entity only through a composite id including the id of other the aggregate + the child entity id (e.g. by creating some value object that represents this reference as a strong type)
Make JobOffer an aggregate on its own if the mentioned considerations hold true in your case
[ Follow up from this question & comments: Should entity have methods and if so how to prevent them from being called outside aggregate ]
As the title says: i am not clear about what is the actual/precise purpose of entity as a child in aggregate?
According to what i've read on many places, these are the properties of entity that is a child of aggregate:
It has identity local to aggregate
It cannot be accessed directly but through aggregate root only
It should have methods
It should not be exposed from aggregate
In my mind, that translates to several problems:
Entity should be private to aggregate
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
So, why do we have an entity at all instead of Value Objects only? It seams much more convenient to have only value objects, all methods on aggregate and expose value objects (which we already do copying entity infos).
PS.
I would like to focus to child entity on aggregate, not collections of entities.
[UPDATE in response to Constantin Galbenu answer & comments]
So, effectively, you would have something like this?
public class Aggregate {
...
private _someNestedEntity;
public SomeNestedEntityImmutableState EntityState {
get {
return this._someNestedEntity.getState();
}
}
public ChangeSomethingOnNestedEntity(params) {
this._someNestedEntity.someCommandMethod(params);
}
}
You are thinking about data. Stop that. :) Entities and value objects are not data. They are objects that you can use to model your problem domain. Entities and Value Objects are just a classification of things that naturally arise if you just model a problem.
Entity should be private to aggregate
Yes. Furthermore all state in an object should be private and inaccessible from the outside.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
No. We don't expose information that is already available. If the information is already available, that means somebody is already responsible for it. So contact that object to do things for you, you don't need the data! This is essentially what the Law of Demeter tells us.
"Repositories" as often implemented do need access to the data, you're right. They are a bad pattern. They are often coupled with ORM, which is even worse in this context, because you lose all control over your data.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
The trick is, you don't have to. Every object (class) you create is there for a reason. As described previously to create an additional abstraction, model a part of the domain. If you do that, an "aggregate" object, that exist on a higher level of abstraction will never want to offer the same methods as objects below. That would mean that there is no abstraction whatsoever.
This use-case only arises when creating data-oriented objects that do little else than holding data. Obviously you would wonder how you could do anything with these if you can't get the data out. It is however a good indicator that your design is not yet complete.
Entity should be private to aggregate
Yes. And I do not think it is a problem. Continue reading to understand why.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to
save to db, for example)
No. Make your aggregates return the data that needs to be persisted and/or need to be raised in a event on every method of the aggregate.
Raw example. Real world would need more finegrained response and maybe performMove function need to use the output of game.performMove to build propper structures for persistence and eventPublisher:
public void performMove(String gameId, String playerId, Move move) {
Game game = this.gameRepository.load(gameId); //Game is the AR
List<event> events = game.performMove(playerId, move); //Do something
persistence.apply(events) //events contains ID's of entities so the persistence is able to apply the event and save changes usign the ID's and changed data wich comes in the event too.
this.eventPublisher.publish(events); //notify that something happens to the rest of the system
}
Do the same with inner entities. Let the entity return the data that changed because its method call, including its ID, capture this data in the AR and build propper output for persistence and eventPublisher. This way you do not need even to expose public readonly property with entity ID to the AR and the AR neither about its internal data to the application service. This is the way to get rid of Getter/Setters bag objects.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity
are duplicated on entity)
Sometimes the business rules, to check and apply, belongs exclusively to one entity and its internal state and AR just act as gateway. It is Ok but if you find this patter too much then it is a sign about wrong AR design. Maybe the inner entity should be the AR instead a inner entity, maybe you need to split the AR into serveral AR's (inand one the them is the old ner entity), etc... Do not be affraid about having classes that just have one or two methods.
In response of dee zg comments:
What does persistance.apply(events) precisely do? does it save whole
aggregate or entities only?
Neither. Aggregates and entities are domain concepts, not persistence concepts; you can have document store, column store, relational, etc that does not need to match 1 to 1 your domain concepts. You do not read Aggregates and entities from persitence; you build aggregates and entities in memory with data readed from persistence. The aggregate itself does not need to be persisted, this is just a possible implementation detail. Remember that the aggregate is just a construct to organize business rules, it's not a meant to be a representation of state.
Your events have context (user intents) and the data that have been changed (along with the ID's needed to identify things in persistence) so it is incredible easy to write an apply function in the persistence layer that knows, i.e. what sql instruction in case of relational DB, what to execute in order to apply the event and persist the changes.
Could you please provide example when&why its better (or even
inevitable?) to use child entity instead of separate AR referenced by
its Id as value object?
Why do you design and model a class with state and behaviour?
To abstract, encapsulate, reuse, etc. Basic SOLID design. If the entity has everything needed to ensure domain rules and invariants for a operation then the entity is the AR for that operation. If you need extra domain rules checkings that can not be done by the entity (i.e. the entity does not have enough inner state to accomplish the check or does not naturaly fit into the entity and what represents) then you have to redesign; some times could be to model an aggregate that does the extra domain rules checkings and delegate the other domain rules checking to the inner entity, some times could be change the entity to include the new things. It is too domain context dependant so I can not say that there is a fixed redesign strategy.
Keep in mind that you do not model aggregates and entities in your code. You model just classes with behaviour to check domain rules and the state needed to do that checkings and response whith the changes. These classes can act as aggregates or entities for different operations. These terms are used just to help to comunicate and understand the role of the class on each operation context. Of course, you can be in the situation that the operation does not fit into a entity and you could model an aggregate with a V.O. persistence ID and it is OK (sadly, in DDD, without knowing domain context almost everything is OK by default).
Do you wanna some more enlightment from someone that explains things much better than me? (not being native english speaker is a handicap for theese complex issues) Take a look here:
https://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-1
http://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-2
http://blog.sapiensworks.com/post/2016/07/14/DDD-Aggregate-Decoded-3
It has identity local to aggregate
In a logical sense, probably, but concretely implementing this with the persistence means we have is often unnecessarily complex.
We need a read only copy Value-Object to expose information from an
entity (at least for a repository to be able to read it in order to
save to db, for example)
Not necessarily, you could have read-only entities for instance.
The repository part of the problem was already addressed in another question. Reads aren't an issue, and there are multiple techniques to prevent write access from the outside world but still allow the persistence layer to populate an entity directly or indirectly.
So, why do we have an entity at all instead of Value Objects only?
You might be somewhat hastily putting concerns in the same basket which really are slightly different
Encapsulation of operations
Aggregate level invariant enforcement
Read access
Write access
Entity or VO data integrity
Just because Value Objects are best made immutable and don't enforce aggregate-level invariants (they do enforce their own data integrity though) doesn't mean Entities can't have a fine-tuned combination of some of the same characteristics.
These questions that you have do not exist in a CQRS architecture, where the Write model (the Aggregate) is different from a Read model. In a flat architecture, the Aggregate must expose read/query methods, otherwise it would be pointless.
Entity should be private to aggregate
Yes, in this way you are clearly expressing the fact that they are not for external use.
We need a read only copy Value-Object to expose information from an entity (at least for a repository to be able to read it in order to save to db, for example)
The Repositories are a special case and should not be see in the same way as Application/Presentation code. They could be part of the same package/module, in other words they should be able to access the nested entities.
The entities can be viewed/implemented as object with an immutable ID and a Value object representing its state, something like this (in pseudocode):
class SomeNestedEntity
{
private readonly ID;
private SomeNestedEntityImmutableState state;
public getState(){ return state; }
public someCommandMethod(){ state = state.mutateSomehow(); }
}
So you see? You could safely return the state of the nested entity, as it is immutable. There would be some problem with the Law of Demeter but this is a decision that you would have to make; if you break it by returning the state you make the code simpler to write for the first time but the coupling increases.
Methods that we have on entity are duplicated on Aggregate (or, vice versa, methods we have to have on Aggregate that handle entity are duplicated on entity)
Yes, this protect the Aggregate's encapsulation and also permits the Aggregate to protect it's invariants.
I won't write too much. Just an example. A car and a gear. The car is the aggregate root. The gear is a child entity
Lots of examples like order and order lines makes sense, like:
Order is an AR that contains OrderLines
Customer is an AR that contains Orders.
Question is, what is the AR that contains Customer?
I guess it can be something like "shop".
So, shop.AddCustomer(customer)...
but, how to get shop?
If it's an AR (entity) it has an id, so shop.GetById(shopId). If I only have one shop, how does this work with persistence?
Should I have a table (shops) with one line?
Shop is an in-memory object with a collection of Customers?
You got that wrong there. Aggregates do not contain other aggregates! They can only reference them by ID.
An aggregate is a group of entities and value objects that are closely related. The aggregate forms a consistency boundary around them. The Aggregate Root is the root entity in that aggregate that is globally addressable. So in your example with Order and OrderLines, Order could indeed be the AR.
Customer on the other hand, would only reference Orders by ID if it is a separate aggregate.
To retrieve an aggregate, you typically use a Repository. You load an aggregate through the repository by specifying the ID of the aggregate, or some other suitable search parameter.
i've been assigned a quite simple project as an exam and i had the idea to develop it using the Domain Driven Design.
Many of you might say that the application is so simple that going with repositories and UoW is just a waste of time, and you probably be correct but i think of it as an opportunity to learn something more.
The application is a "Flight tickets" system and from the following image you could probably well guess it's functionality.
The thing is that i am not sure if i am correctly seperating the aggregates and their roots.
EDIT:
I presented the data model so anyone can spot the whole functionality easily.
The thing is that from an employe perspective the flight as "Rad" said encapsulates the whole functionality and is the aggregate root.
However from an admin perspective, flights are none his bussiness.
He just want to update or add new planes-companies, etc..
So then there is a new aggregate root which is the Airplane which encapsulates the Airplane seats(Entity), the seatType(value object) and the company(Entity) as a new aggregate.
This tends to confuses me as i have an aggregate root(Airplane) inside another aggregate(Flight Aggregate).
Since the aggregate root is consider to be the "CORE" entity which without it the other entities inside it will not make any sense without it, i am thinking about Company. And i conclude that company makes sense without the airplane.
To explain more i think of the scenario where the admin want to just insert a new Company, or want to first load a company and then its airplanes.
DDD principles say that any entities inside the aggregate may only be loaded from the root itself.
So here is the confusion.
Mmm, where is the Aggregate and Aggregate roots here ? This is only Data Model... Not Domain Model.
Aggregate is a cluster of items (Domain Object) that are gathered together, and Aggregate Root are the entity root... (If you consider the Flight Aggregate encapsulates Seats, Location... The Aggregate Root should be Flight entity).
[Edit]
You have to ignore the persistent. In your app you can have many aggregate it depends in your Domain, maybe Flight is an Aggregate and Company another one ;), don't confuse entity and Aggregate...
An aggregate is a group of entities (objects with identity) and maybe value objects (objects without identity, immutable). There is exactly one entity in an aggregate that is the aggregate root. You can easily identify it by checking if the other objects in the aggregate depend on it, for example, if you delete an object of the aggregate root type, the remaining objects don't make sense anymore (in database terms, you'd cascade delete the dependent objects).
The aggregate root is the sole object in the aggregate that gives access to the other types in the aggregate, hence you'll have one repository per aggregate and it returns instances of aggregate root type.
Quotes are from DDD: Tackling Complexity in the Heart of Software ( pg. 150 )
a)
global search access to a VALUE is often meaningles, because finding a
VALUE by its properties would be equivalent to creating a new instance
with those properties. There are exceptions. For example, when I am
planning travel online, I sometimes save a few prospective itineraries
and return later to select one to book. Those itineraries are VALUES
(if there were two made up of the same flights, I would not care which
was which), but they have been associated with my user name and
retrieved for me intact.
I don't understand author's reasoning as for why it would be more appropriate to make Itinierary Value Object globally accessible instead of clients having to globally search for Customer root entity and then traverse from it to this Itinierary object?
b)
A subset of persistent objects must be globaly accessible through a
search based on object attributes ... They are usualy ENTITIES,
sometimes VALUE OBJECTS with complex internal structure ...
Why is it more common for Values Objects with complex internal structure to be globally accesible rather than simpler Value Objects?
c) Anyways, are there some general guidelines on how to determine whether a particular Value Object should be made globally accessible?
UPDATE:
a)
There is no domain reason to make an itinerary traverse-able through
the customer entity. Why load the customer entity if it isn't needed
for any behavior? Queries are usually best handled without
complicating the behavioral domain.
I'm probably wrong about this, but isn't it common that when user ( Ie Customer root entity ) logs in, domain model retrieves user's Customer Aggregate?
And if users have an option to book flights, then it would also be common for them to check from time to time the Itineraries ( though English isn't my first language so the term Itinerary may actually mean something a bit different than I think it means ) they have selected or booked.
And since Customer Aggregate is already retrieved from the DB, why issue another global search for Itinerary ( which will probably search for it in DB ) when it was already retrieved together with Customer Aggregate?
c)
The rule is quite simple IMO - if there is a need for it. It doesn't
depend on the structure of the VO itself but on whether an instance of
a particular VO is needed for a use case.
But this VO instance has to be related to some entity ( ie Itinerary is related to particular Customer ), else as the author pointed out, instead of searching for VO by its properties, we could simply create a new VO instance with those properties?
SECOND UPDATE:
a) From your link:
Another method for expressing relationships is with a repository.
When relationship is expressed via repository, do you implement a SalesOrder.LineItems property ( which I doubt, since you advise against entities calling repositories directly ), which in turns calls a repository, or do you implement something like SalesOrder.MyLineItems(IOrderRepository repo)? If the latter, then I assume there is no need for SalesOrder.LineItems property?
b)
The important thing to remember is that aggregates aren't meant to be
used for displaying data.
True that domain model doesn't care what upper layers will do with the data, but if not using DTO's between Application and UI layers, then I'd assume UI will extract the data to display from an aggregate ( assuming we sent to UI whole aggregate and not just some entity residing within it )?
Thank you
a) There is no domain reason to make an itinerary traverse-able through the customer entity. Why load the customer entity if it isn't needed for any behavior? Queries are usually best handled without complicating the behavioral domain.
b) I assume that his reasoning is that complex value objects are those that you want to query since you can't easily recreate them. This issue and all query related issues can be addressed with the read-model pattern.
c) The rule is quite simple IMO - if there is a need for it. It doesn't depend on the structure of the VO itself but on whether an instance of a particular VO is needed for a use case.
UPDATE
a) It is unlikely that a customer aggregate would have references to the customer's itineraries. The reason is that I don't see how an itinerary would be related to behaviors that would exist in the customer aggregate. It is also unnecessary to load the customer aggregate at all if all that is needed is some data to display. However, if you do load the aggregate and it does contain reference data that you need you may as well display it. The important thing to remember is that aggregates aren't meant to be used for displaying data.
c) The relationship between customer and itinerary could be expressed by a shared ID - each itinerary would have a customerId. This would allow lookup as required. However, just because these two things are related it does not mean that you need to traverse customer to get to the related entities or value objects for viewing purposes. More generally, associations can be implemented either as direct references or via repository search. There are trade-offs either way.
UPDATE 2
a) If implemented with a repository, there is no LineItems property - no direct references. Instead, to obtain a list of line items a repository is called.
b) Or you can create a DTO-like object, a read-model, which would be returned directly from the repository. The repository can in turn execute a simple SQL query to get all required data. This allows you to get to data that isn't part of the aggregate but is related. If an aggregate does have all the data needed for a view, then use that aggregate. But as soon as you have a need for more data that doesn't concern the aggregate, switch to a read-model.