async.forEachSeries(jList, function(json, cb) {
setTimeout(foo,600000);
function1(j,function(){}
};
I want to introduce a delay before each entry of the iterator is picked up for execution. I tried a setTimeOut but it is not working.
Any ideas?
in your code the setTimeout sets a timer and a code to run later once the timer is triggered. but your code continues to run and will not stop the thread and wait for the timeout to finish.
so you can go about it 2 ways ...to run some kind of endless loop that waits for the time you want to pass and then continue or set timers to trigger in the interval you want times the index.
then your thread is free to run and its not stuck waiting.
var forEach = require('async-foreach').forEach;
var timeoutLength = 3000;
forEach(["a", "b", "c"], function (item, index) {
setTimeout(function () {
console.log("each", item, index);
}, timeoutLength * index);
});
Related
The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work
Is it possible to have a while loop execute, while some other code runs?
For example:
var test = true;
log();
function log() {
setTimeout(log, 3000);
test = true;
console.log("Standard log");
}
while ( test == true ) {
console.log("Algo");
}
If we run the above code, it prints "Standard log" once, then continuously prints "algo". Instead, I'd like it to continuously print "also", alongside printing "standard log" every 3 seconds.
It seems the while loop cancels any other code - I assume this is because its synchronous, but thats a newbie guess.
Does anyone have any suggestions on how best to attack this?
Thanks!
You have to take the second while loop out of the main execution thread, which you can do with setInterval with a timer of zero (or anything above that if you want to slow down the loop a bit!).
You'll also need to reverse some of the code there to cancel the interval when test becomes false.
var test = true;
log();
function log() {
setTimeout(log, 3000);
test = true;
console.log("Standard log");
}
let intervalId = setInterval(() => {
if(!test)
clearInterval(intervalId)
console.log("Algo");
},0)
I have a cron job running on pm2 that sends notifications on a 5 second interval. Although it should never happen, I'm concerned that the script will take longer than 5 seconds to run. Basically, if the previous run takes 6 seconds, I don't want to start the next run until the first one finishes. Is there a way to handle this solely in pm2? Everything I've found says to use shell scripting to handle it, but it's not nearly as easy to replicate and move to new servers when needed.
As of now, I have the cron job just running in a never ending while loop (unless there's an error) that waits up to 5 seconds at the end. If it errors, it exits and reports the error, then restarts because it's running via pm2. I'm not too excited about this implementation though. Are there other options?
edit for clarification of my current logic -
function runScript() {
while (!err) {
// do stuff
wait(5 seconds - however long 'do stuff' took) // if it took 1 second to 'do stuff', then it waits 4 seconds
}
}
runScript()
This feels like a hacky way to get around the cron limits of pm2. It's possible that I'm just being paranoid... I just wanna make sure I'm not using antipatterns.
What do you mean you have the cron job running in a while loop? PM2 is starting a node process which contains a never-ending while loop that waits 5 seconds? Your implementation of a cron seems off to me, maybe you could provide more details.
Instead of a cron, I would use something like setTimeout method. Run your script using PM2 and in the script is a method like such:
function sendMsg() {
// do the work
setTimeout(sendMsg, 5000); // call sendMsg after waiting 5 seconds
}
sendMsg();
By doing it this way, your sendMsg function can take all the time it needs to run, and the next call will start 5 seconds after that. PM2 will restart your application if it crashes.
If you're looking to do it at specific 5 second intervals, but only when the method is not running, simply add a tracking variable to the equation, something like:
let doingWork = false;
function sendMsg() {
if (!doingWork) {
doingWork = true;
// do the work
doingWork = false;
}
}
setInterval(sendMsg, 5000); // call sendMsg every 5 seconds
You could replace setInterval with PM2 cron call on the script, but the variable idea remains the same.
To have exactly 5000 ms between the end your actions:
var myAsyncLongAction = function(cb){
// your long action here
return cb();
};
var fn = function(){
setTimeout(function(){
// your long action here
myAsyncLongAction(function(){
console.log(new Date().getTime());
setImmediate(fn);
});
}, 5000)
};
fn();
To have exactly 5000 ms between the start of your actions :
var myAsyncLongAction = function(cb){
// your long action here
setTimeout(function(){
return cb();
}, 1000);
};
var fn = function(basedelay, delay){
if(delay === undefined)
delay = basedelay;
setTimeout(function(){
// your long action here
var start = new Date().getTime();
myAsyncLongAction(function(){
var end = new Date().getTime();
var gap = end - start;
console.log("Action took "+(gap)+" ms, send next action in : "+(basedelay - gap)+" ms");
setImmediate(fn, basedelay, (gap < basedelay ? 1 : basedelay - gap));
});
}, delay);
};
fn(5000);
The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work
I am new to node.js and little bit confused on understanding the event-loop. As far as i know from https://github.com/nodejs/node/blob/master/doc/topics/event-loop-timers-and-nexttick.md, the event-loop phases only process setTimeout, setInterval, setImmediate, process.nextTick, promises and some I/O callbacks.
My question is, if i have following code:
for (var i = 0; i < 100000000; i++)
;
in which phase the above code will get executed ?
Regular JavaScript code, like the for loop in your example, is executed before the queues are cleared. The first thing node will do is run your code, and will only call callbacks, timeout results, I/O results, and so on after your code finishes.
As an example, you could try this code:
fs.open('filename', 'r', () => {
console.log('File opened.');
});
for (var i = 0; i < 100000000; i++);
console.log('Loop complete.');
No matter how big or small your loop variable, 'Loop complete' will always appear before 'File opened'. This is because with only one thread, node can't run the callback you've supplied to the fs.open function until the loop code has finished.
Remember that there isn't a "main" thread that node keeps going back to. Most long-running node programs will run through the code in main.js pretty quickly, and subsequent code is all going to come from callbacks. The purpose of the initial execution is to define how and when those callbacks happen.
In the node event loop doc (https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick), the following code is given as an example:
const fs = require('fs');
function someAsyncOperation(callback) {
// Assume this takes 95ms to complete
fs.readFile('/path/to/file', callback);
}
const timeoutScheduled = Date.now();
setTimeout(() => {
const delay = Date.now() - timeoutScheduled;
console.log(`${delay}ms have passed since I was scheduled`);
}, 100);
// do someAsyncOperation which takes 95 ms to complete
someAsyncOperation(() => {
const startCallback = Date.now();
// 10ms loop
while (Date.now() - startCallback < 10) {
// do nothing
}
});
The loop keeps scanning according to phases and after fs.readFile() finishes, the poll queue is is empty, so its callback will be added and immediately executed. The callback holds a blocking 10ms loop before the timer is executed. That is why the delay will display:
105ms have passed since I was scheduled instead of the 100ms you might expect.
Most of your code will live in callbacks so will be executed in the poll phase. If not, like in your example, it will be executed before entering any phases as it will block the event loop.
The caveat are callbacks scheduled by setImmediate that will enter the check phase before resuming the poll phase in the next loop.