Spark cluster set up error - apache-spark

With some research over the internet, I can use
sbin/start-master.sh
to start the spark master server spark service over my Ubuntu Linux computers
and use
bin/spark-class org.apache.spark.deploy.worker.Worker spark://...
for the slave nodes service up and running.
The good news was I can see the local web page with works found alive.
However, after such, I tried to launch the shell to work ...
MASTER=spark://localhost:7077 bin/spark-shell
but it returned:
sparkMaster#localhost:7077 ...
And therefore I modified the code to
MASTER=spark://sparkuser#localhost:7077 bin/spark-shell
where the sparkuser is the one connected to the two nodes
However, with such modification, I got:
ERROR SparkDeploySchedulerBackend: Application has been killed. Reason: All masters are unresponsive! Giving up.
WARN SparkDeploySchedulerBackend: Application ID is not initialized yet.
ERROR TaskSchedulerImpl: Exiting due to error from cluster scheduler: All masters are unresponsive! Giving up.
and when I tried
MASTER=local-cluster[3,2,1024] bin/spark-shell
It did come out with the spark logo in the shell but I was afraid the slave nodes were not binding in.
Did I miss anything for the Spark cluster setting?

Just launch spark-shell on cluster with --master flag as follows
./spark-shell --master spark://localhost:7077 bin/spark-shell

Related

Spark Structure Streaming job failing in cluster mode

I am using spark-sql-2.4.1 v in my application.
While writing data on to hdfs folder I am facing this issue in spark-streaming application
Error:
yarn.Client: Deleted staging directory hdfs://dev/user/xyz/.sparkStaging/application_1575699597805_47
20/02/24 14:02:15 ERROR yarn.Client: Application diagnostics message: User class threw exception: org.apache.hadoop.security.AccessControlException: Permission denied: user= xyz, access=WRITE, inode="/tmp/hadoop-admin":admin:supergroup:drwxr-xr-x
.
.
.
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=xyz, access=WRITE, inode="/tmp/hadoop-admin":admin:supergroup:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:350)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:251)
While writing data on to HDFS folder I am facing this issue in spark-streaming application. When I run in yarn-cluster mode I face this issue i.e.
--master yarn \
--deploy-mode cluster \
But when I run in “yarn-client” mode it runs fine i.e.
--master yarn \
--deploy-mode client \
What is the root cause of this problem?
Fundamental question here, why it is trying to write in "/tmp/hadoop-admin/" instead of respective user directory i.e. hdfs://qa2/user/xyz/?
I have come across this fix:
https://issues.apache.org/jira/browse/SPARK-26825
How can I implement it in my spark-sql application?
The only difference between the working --deploy-mode client and the failing --deploy-mode cluster cases is the location of the driver. In client deploy mode, the driver runs on the machine you execute spark-submit (which is usually an edge node that is configured to use a YARN cluster, but it is not part of it) while in cluster deploy mode the driver runs as part of a YARN cluster (one of the nodes under control of YARN).
It looks like you've got a misconfigured edge node.
I'd not be surprised if a regular Spark SQL-only Spark application would be failing too. I'd not be surprised to hear that it has nothing to do with a streaming query (Spark Structured Streaming) and would fail for any Spark application.

Start Spark master on the IP instead of Hostname

I'm trying to set up a remote Spark 2.4.5 cluster on Ubuntu 18. After I start ./sbin/stat-master.sh WebUI is available at <INSTANCE-IP>:8080 but it shows "Spark Master at spark://spark-master:7077" where spark-master is my hostname on the remote machine.
I'm able to start a worker with ./sbin/start-slave.sh spark://spark-master:7077 only, but <INSTANCE-IP>:4040 doesn't work. When I try ./sbin/start-slave.sh spark://<INSTANCE-IP>:7077 I can see the process but the worker is not visible in WebUI.
As a result, I can not connect to the cluster from my local machine with spark-shell --master spark://<INSTANCE-IP>:7077. The error is:
StandaloneAppClient$ClientEndpoint: Failed to connect to master <INSTANCE-IP>:7077

How can I run spark in headless mode in my custom version on HDP?

How can I run spark in headless mode?
Currently, I am executing spark on a HDP 2.6.4 (i.e. 2.2 is installed by default) on the cluster.
I have downloaded a spark 2.4.1 Scala 2.11 release in headless mode (i.e. no hadoop jars are built in) from https://spark.apache.org/downloads.html. The exact name is: pre-built with scala 2.11 and user provided hadoop
Now when trying to run I follow: https://spark.apache.org/docs/latest/hadoop-provided.html
export SPARK_DIST_CLASSPATH=$(hadoop classpath)
export HADOOP_CONF_DIR=/etc/hadoop/conf
export SPARK_HOME=/home/<<my_user>>/development/software/spark_no_provided_hadoop
./bin/spark-shell --master yarn --deploy-mode client --queue <<my_yarn_queue>>
Unfortunately, it fails to start:
19/05/01 07:12:23 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
19/05/01 07:12:38 ERROR cluster.YarnClientSchedulerBackend: The YARN application has already ended! It might have been killed or the Application Master may have failed to start. Check the YARN application logs for more details.
19/05/01 07:12:38 ERROR spark.SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Application application_1555489055691_64276 failed 2 times due to AM Container for appattempt_1555489055691_64276_000002 exited with exitCode: 1
When looking at the logs for details I see:
Log Type: prelaunch.err
launch_container.sh: line 30: $PWD:$PWD/__spark_conf__:$PWD/__spark_libs__/*:/etc/hadoop/conf:/usr/hdp/2.6.4.0-91/hadoop/*:/usr/hdp/2.6.4.0-91/hadoop/lib/*:/usr/hdp/current/hadoop-hdfs-client/*:/usr/hdp/current/hadoop-hdfs-client/lib/*:/usr/hdp/current/hadoop-yarn-client/*:/usr/hdp/current/hadoop-yarn-client/lib/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/${hdp.version}/hadoop/lib/hadoop-lzo-0.6.0.${hdp.version}.jar:/etc/hadoop/conf/secure:/usr/hdp/2.6.4.0-91/hadoop/conf:/usr/hdp/2.6.4.0-91/hadoop/lib/*:/usr/hdp/2.6.4.0-91/hadoop/.//*:/usr/hdp/2.6.4.0-91/hadoop-hdfs/./:/usr/hdp/2.6.4.0-91/hadoop-hdfs/lib/*:/usr/hdp/2.6.4.0-91/hadoop-hdfs/.//*:/usr/hdp/2.6.4.0-91/hadoop-yarn/lib/*:/usr/hdp/2.6.4.0-91/hadoop-yarn/.//*:/usr/hdp/2.6.4.0-91/hadoop-mapreduce/lib/*:/usr/hdp/2.6.4.0-91/hadoop-mapreduce/.//*:/usr/hdp/2.6.4.0-91/tez/*:/usr/hdp/2.6.4.0-91/tez/lib/*:/usr/hdp/2.6.4.0-91/tez/conf:$PWD/__spark_conf__/__hadoop_conf__: bad substitution
So:
/usr/hdp/${hdp.version}/hadoop/lib/hadoop-lzo-0.6.0.${hdp.version}.jar: bad substitution
is the cause (and similar to https://community.hortonworks.com/questions/23699/bad-substitution-error-running-spark-on-yarn.html), but this is completely inside Ambari's management domain. How can I work around it to run a more recent version of spark (2.4.x) on the existing 2.6.x HDP plattform?
edit
Assuming I passed a wrong configuration directory for HADOOP_CONF_DIR, it is unset. But then:
When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.
so it must be passed. Could it be, that I am passing the wrong value?
According to Exception: java.lang.Exception: When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment. in spark could be correct. For me, no HADOOP_HOME is set by default.
Even when setting to: export HADOOP_CONF_DIR=/usr/hdp/current/spark2-client/conf, the same bad substitution error remains.
NOTE: some interesting steps:
https://community.hortonworks.com/articles/244059/steps-to-install-supplementary-spark-on-hdp-cluste.html, but not for the headless edition
https://community.hortonworks.com/questions/85757/how-to-add-the-hadoop-and-yarn-configuration-file.html
Indeed, https://community.hortonworks.com/questions/23699/bad-substitution-error-running-spark-on-yarn.html is the solution:
cd /usr/hdp
ls
2.6.xxx current share
So for me:
./bin/spark-shell --master yarn --deploy-mode client --queue <<my_queue>>--conf spark.driver.extraJavaOptions='-Dhdp.version=2.6.xxx' --conf spark.yarn.am.extraJavaOptions='-Dhdp.version=2.6.xxx'
works

Spark runs endlessly for Pi example

I just setup Spark and ran the command
spark-shell --master yarn-client --driver-memory 512m --executor-memory 512m
However, it just keeps endlessly printing out messages like
16/04/25 17:34:46 INFO Client: Application report for application_1460481694166_0125 (state: ACCEPTED)
I read somewhere that I could try to kill the application. But I'm not sure what
When I try
yarn application -list
I see
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
application_1460481694166_0118 org.apache.spark.examples.SparkPi SPARK root default ACCEPTED UNDEFINED 0% N/A
application_1460481694166_0124 Spark shell SPARK root default ACCEPTED UNDEFINED 0% N/A
application_1460481694166_0120 Spark shell ...
Zeppelin SPARK zeppelin default RUNNING UNDEFINED 10% http://10.0.2.15:4040
application_1460481694166_0117 org.apache.spark.examples.SparkPi SPARK root default ACCEPTED UNDEFINED 0% N/A
application_1460481694166_0123 Spark shell
...
I'm not sure why Zeppelin is showing up because I closed it in my web browser
What do I need to do now?
I'm guessing Zeppelin is still running even though you closed your browser. Closing the browser is not the same as stopping the hosting process. Stopping the hosting process is done in the CLI tab that started the process. As a last ditch, you can yarn application -kill any of the running processes in any tab.
yarn application -kill application_1460481694166_0118
That will kill the (first) spark application.

SparkDeploySchedulerBackend Error: Application has been killed. All masters are unresponsive

While I'm starting Spark shell:
bin>./spark-shell
I get the following error :
Spark assembly has been built with Hive, including Data nucleus jars on classpath
Welcome to SPARK VERSION 1.3.0
Using Scala version 2.10.4 (Java HotSpot(TM) Server VM, Java 1.7.0_75)
Type in expressions to have them evaluated.
Type :help for more information.
15/05/10 12:12:21 ERROR SparkDeploySchedulerBackend: Application has been killed. Reason: All masters are unresponsive! Giving up.
15/05/10 12:12:21 ERROR TaskSchedulerImpl: Exiting due to error from cluster scheduler: All masters are unresponsive! Giving up.
I have installed spark by follow below link :- http://www.philchen.com/2015/02/16/how-to-install-apache-spark-and-cassandra-stack-on-ubuntu
You should supply your Spark Cluster's Master URL when start a spark-shell
At least:
bin/spark-shell --master spark://master-ip:7077
All the options make up a long list and you can find the suitable ones yourself:
bin/spark-shell --help
I am assuming that you are running this in standalone/local mode.
Run your spark shell with following line. That indicates you are using all the available cores of your master which is local machine.
bin/spark-shell --master local[*]
http://spark.apache.org/docs/1.2.1/submitting-applications.html#master-urls
You also need to start spark master and slave before giving spark-submit command
start-master.sh
start-slave.sh spark://spark:7077
then use
spark-submit --master spark://spark:7077
Look at your log files for "permission denied" errors... It may happens that your client service doesn't have the proper authority to access your Master folders.

Resources