I literally started learning haskell in the past few hours following this tutorial. I keep getting Couldn't match type error when trying to compile the following code:
module Main where
import Control.Monad
main = do
putStrLn "Enter child age"
input <- getLine
-- convert the string to int
let age = read input :: Int
unless (age == 0) $ do
-- let ages = []
-- print age
-- add child age to list here?
ages ++ [age]
main
Here is the error:
Couldn't match type `IO' with `[]'
Expected type: [()]
Actual type: IO ()
I have been searching for several hours trying to understand the issue but have no clue. Why does ages ++ [age2] expects a type IO Int ? and how to resolve this issue?
update: ages is a list which will contain the age of both child. It will be used in future. Also created the loop
ages ++ [age1] and ages ++ [age2] are expressions that result in [Int]. They don’t modify ages; ages is just a value. Since you’re not using ages at all, a really simple fix would just be to take all three lines out:
let ages = []
ages ++ [age1]
ages ++ [age2]
ages can be built from age1 and age2 later if you were going to use it as [age1, age2]. If you were wanting to use a list to not repeat yourself, you’d probably do it more along these lines in Haskell:
readAge :: String -> IO Int
readAge prompt = do
putStrLn prompt
readLn :: IO Int
main = do
ages <- mapM readAge ["Enter child 1 age", "Enter child 2 age"]
print ages
To do it in a loop, you could start with:
readAges :: IO [Int]
readAges = do
putStrLn "Enter child age"
age <- readLn :: IO Int
if age == 0 then
return []
else
fmap (age:) readAges
main :: IO ()
main = do
ages <- readAges
print ages
where fmap (age:) readAges is short for:
ages <- readAges
return $ age : ages
In Haskell, variables are immutable. You might be looking for something more like this:
inputAges :: [Int] -> IO [Int]
inputAges (0:otherAges) = return otherAges
inputAges ages = _
This recursive function keeps track of the ages in its argument. The first line of the definition checks to see if the latest age read is 0. If so, it gives you back everything but the 0. A list will match the pattern (0:otherAges) if it has at least one element and its head is 0. If it matches, the tail is bound to otherAges. Otherwise, it goes to the next pattern (here, the next line).
I left the recursive case to be filled in, but I can give some more help on that. You need something that reads in an age and calls itself with a list that has the new age prepended. The reading in part will look much the same as it does in the code in your question.
Related
This question already has an answer here:
How to use variable from do block assignment line in a where clause?
(1 answer)
Closed 2 years ago.
I was making a program with Haskell and it's IO, when I came across an error I don't understand. When I use a where statement after a do block it does not do the same thing as without the do block.
The program that works is:
import Control.Monad
prog :: IO()
prog = do m <- getLine
n <- getLine
p <- getLine
replicateM_ (read m :: Int) (putStrLn n)
replicateM_ (read m :: Int) (putStrLn p)
But when I replace the read m :: Int with a where statement like this:
import Control.Monad
prog1 :: IO()
prog1 = do m <- getLine
n <- getLine
p <- getLine
replicateM_ (a) (putStrLn n)
replicateM_ (a) (putStrLn p)
where
a = read m :: Int
I get the error:
Template.hs:23:21: error: Variable not in scope: m :: String
|
23 | a = read m :: Int
| ^
I have looked what the problem could be, and I think it has to do with the type of m, which is IO String. I know you have to stay in the IO type (once you are in it) to be able to work with the string. But I don't understand why the 'where' would "break out" of this IO type. To my understanding the two examples I gave are functional the same. First I thought that the error wouldn't be fixed by writing the program without the where, because the function read is from the type read :: Read a => String -> a and my input in the first program is also IO String. So why didn't my first program give me an error? Could someone explain what I understand wrong and how I can fix my program so I only have to execute read m :: Int once? Just some tips of how to use a where statement under a do block would also help.
The original program I got the problem in is longer and not all relevant so I used this minimal working example to explain the essence of my question. In my original program I have multiple statements after where, so I don't want to substitute it all like I did in this example.
The bindings in the do block are opaque to the where statement after it, so you can't reference anything defined in the do block inside the where statement. You don't need to either, since you can use let directly inside do:
prog1 = do m <- getLine
n <- getLine
p <- getLine
-- alternatively: [m, n, p] <- replicateM 3 getLine
-- use a let statement
let a = read m :: Int
replicateM_ a (putStrLn n)
replicateM_ a (putStrLn p)
I am trying to make a function that takes a list of strings and executes the command putStrLn or print (I think they are basically equivalent, please correct me if I am wrong as I'm still new to Haskell) to every element and have it printed out on my terminal screen. I was experimenting with the map function and also with lambda/anonymous functions as I already know how to do this recursively but wanted to try a more complex non recursive version. map returned a list of the type IO() which was not what I was going for and my attempts at lambda functions did not go according to plan. The basic code was:
test :: [String] -> something
test x = map (\a->putStrLn a) x -- output for this function would have to be [IO()]
Not entirely sure what the output of the function was supposed to be either which also gave me issues.
I was thinking of making a temp :: String variable and have each String appended to temp and then putStrLn temp but was not sure how to do that entirely. I though using where would be viable but I still ran into issues. I know how to do this in languages like java and C but I am still quite new to Haskell. Any help would be appreciated.
There is a special version of map that works with monadic functions, it's called mapM:
test :: [String] -> IO [()]
test x = mapM putStrLn x
Note that this way the return type of test is a list of units - that's because each call to putStrLn returns a unit, so result of applying it to each element in a list would be a list of units. If you'd rather not deal with this silliness and have the return type be a plain unit, use the special version mapM_:
test :: [String] -> IO ()
test x = mapM_ putStrLn x
I was thinking of making a temp :: String variable and have each String appended to temp and then putStrLn temp
Good idea. A pattern of "render the message" then a separate "emit the message" is often nice to have long term.
test xs = let temp = unlines (map show xs)
in putStrLn temp
Or just
test xs = putStrLn (unlines (show <$> xs))
Or
test = putStrLn . unlines . map show
Not entirely sure what the output of the function was supposed to be either which also gave me issues.
Well you made a list of IO actions:
test :: [String] -> [IO ()]
test x = map (\a->putStrLn a) x
So with this list of IO actions when do you want to execute them? Now? Just once? The first one many times the rest never? In what order?
Presumably you want to execute them all now. Let's also eta reduce (\a -> putStrLn a) to just putStrLn since that means the same thing:
test :: [String] -> IO ()
test x = sequence_ (map (\a->putStrLn a) x)
///Edit
I have a problem with haskell. If someone can help me, that would be great.
I'm inserting records into a file using the following code:
check :: Int -> Int
check a
|a > 0 && a<=10 = a
|otherwise = error "oh. hmm.. enter a number from the given interval"
ame :: IO ()
ame = do
putStr "Enter the file name: "
name <- getLine
putStrLn "Do you want to add new records? "
question <- getLine
if question == "yes" then do
putStrLn "Enter your records:"
newRec <- getLine
appendFile name ('\n':newRec)
--new lines--
putStrLn "enter a number between 0 and 10: "
something <- getLine
return (read something:: Int)
let response = check something
putStrLn response
appendFile name ('\n':something)
putStrLn "enter something new again: "
something2 <- getLine
appendFile name ('\n':something2)
putStrLn "a"
else
putStr "b"
Now I want to extract some records from this file, using a specific criteria. For example, i want to extract and display records from even(or odd or any other criteria) rows. can I do that? if yes, how?
Also...
I want to check the user input. Let's say that I don't want him/her to enter a string instead of an integer. can I also check his/her input? do I need to create another function and call that function inside the code from above?
///Edit
thank you for answering. but how can i embed it into my previous code?
I've tried now to create a function(you can see the above code) and then call that function in my IO. but it doesn't work..
Yes, it is certainly possible to display only certain rows. If you want to base it off of the row number, the easiest way is to use zip and filter
type Record = String
onlyEven :: [Record] -> [Record]
onlyEven records =
map snd $ -- Drop the numbers and return the remaining records
filter (even . fst) $ -- Filter by where the number is even
zip [1..] -- All numbers
records -- Your records
This technique can be used in a lot of circumstances, you could even abstract it a bit to
filterByIdx :: Integral i => (i -> Bool) -> [a] -> [a]
filterByIdx condition xs = map snd $ filter (condition . fst) $ zip [1..] xs
-- Could also use 0-based of `zip [0..] xs`, up to you
onlyEven :: [a] -> [a]
onlyEven = filterByIdx even
If you want to check if an input is an Int, the easiest way is to use the Text.Read.readMaybe function:
import Text.Read (readMaybe)
promptUntilInt :: IO Int
promptUntilInt = do
putStr "Enter an integer: "
response <- getLine
case readMaybe response of
Just x -> return x
Nothing -> do
putStrLn "That wasn't an integer!"
promptUntilInt
This should give you an idea of how to use the function. Note that in some cases you'll have to specify the type signature manually as case (readMaybe response :: Maybe Int) of ..., but here it'll work fine because it can deduce the Int from promptUntilInt's type signature. If you get an error about how it couldn't figure out which instance for Read a to use, you need to manually specify the type.
You have
something <- getLine
return (read something:: Int)
let response = check something
putStrLn response
To step through what you're trying to do with these lines:
something <- getLine
getLine has the type IO String, meaning it performs an IO action and returns a String. You can extract that value in do notation as
something <- getLine
Just as you have above. Now something is a String that has whatever value was entered on that line. Next,
return (read something :: Int)
converts something to an Int, and then passes it to the function return. Remember, return is not special in Haskell, it's just a function that wraps a pure value in a monad. return 1 :: Maybe Int === Just 1, for example, or return 1 :: [Int] === [1]. It has contextual meaning, but it is no different from the function putStrLn. So that line just converts something to an Int, wraps it in the IO monad, then continues on to the next line without doing anything else:
let response = check something
This won't compile because check has the type Int -> Int, not String -> String. It doesn't make any sense to say "hello, world" > 0 && "hello, world" <= 10, how do you compare a String and an Int? Instead, you want to do
let response = check (read something)
But again, this is unsafe. Throwing an error on an invalid read or when read something is greater than 10 will crash your program completely, Haskell does errors differently than most languages. It's better to do something like
check :: Int -> Bool
check a = a > 0 && a <= 10
...
something <- getLine
case readMaybe something of
Nothing -> putStrLn "You didn't enter a number!"
Just a -> do
if check a
then putStrLn "You entered a valid number!"
else putStrLn "You didn't enter a valid number!"
putStrLn "This line executes next"
While this code is a bit more complex, it's also safe, it won't ever crash and it handles each case explicitly and appropriately. By the way, the use of error is usually considered bad, there are limited capabilities for Haskell to catch errors thrown by this function, but errors can be represented by data structures like Maybe and Either, which give us pure alternatives to unsafe and unpredictable exceptions.
Finally,
putStrLn response
If it was able to compile, then response would have the type Int, since that's what check returns. Then this line would have a type error because putStrLn, as the name might suggest, puts a string with a new line, it does not print Int values. For that, you can use print, which is defined as print x = putStrLn $ show x
Since this is somewhat more complex, I would make a smaller function to handle it and looping until a valid value is given, something like
prompt :: Read a => String -> String -> IO a
prompt msg failMsg = do
putStr msg
input <- getLine
case readMaybe input of
Nothing -> do
putStrLn failMsg
prompt
Just val -> return val
Then you can use it as
main = do
-- other stuff here
-- ...
-- ...
(anInt :: Int) <- prompt "Enter an integer: " "That wasn't an integer!"
-- use `anInt` now
if check anInt
then putStrLn $ "Your number multiplied by 10 is " ++ show (anInt * 10)
else putStrLn "The number must be between 1 and 10 inclusive"
You don't have to make it so generic, though. You could easily just hard code the messages and the return type like I did before with promptUntilInt.
I started with programming in Haskell about 4 month ago and now I came to the point where I have to deal with the IO system of Haskell.
I already did a lot of IO actions and haven't faced any problems I couldn't solve by myself, but this time I googled for almost two hours for no avail to get some information about the function readMaybe. So I have the following problem set to solve and I already tried a lot of different approaches to solve it but all the time I get the same failure message from my compiler:
No instance for (Read a0) arising from a use of `readMaybe'
The type variable `a0' is ambiguous
I understand what the compiler does want to tell me but I have no idea how to solve this problem. I already tried to add a class constraint, but without success.
So here is my very small and simple program that is just counting how many valid numbers the user has entered. The program is meant to terminate when the user enters an empty line.
This is just a auxiliary function I want to use for my project later on.
countNumbers :: IO Int
countNumbers = do
x <- count 0
return x where
count :: Int -> IO Int
count n = do
line <- getLine
case line of
"" -> do
return n
_ -> case readMaybe line of
Just _ -> do
x <- count (n+1)
return x
Nothing -> do
x <- count n
return x
Unfortunately I couldn't find out a lot of informations about the function readMaybe. The only thing I could find was in the Haskell library Text.Read:
readMaybe :: Read a => String -> Maybe aSource
Parse a string using the Read instance. Succeeds if there is exactly one valid result.
The very weird thing for me is that I have already written such a function that uses the readMaybe function and it worked perfectly ...
This program is just asking the user for a number and keeps asking as long as the user enters a valid number
getLineInt :: IO Int
getLineInt = do
putStrLn "Please enter your guess"
line <- getLine
case readMaybe line of
Just x -> do
return x
Nothing -> do
putStrLn "Invalid number entered"
x <- getLineInt
return x
So far as I can see there are no differences between the usage of the function readMaybe in the two programs and therefore it works in the one but not in the other :)
I would be really thankful for any hints from you!!
This has nothing to do with IO, so maybe you don't understand what the compiler is trying to tell you. There is a type variable a in readMaybe's signature; a has to have a Read instance, but other than that it can be anything. The compiler is telling you that it doesn't have any way to determine what you want a to be.
In getLineInt you don't have this problem, because you are returning the result of readMaybe and the type signature says it should be Int. In countNumbers, you're not using the result of readMaybe, so there's nothing that can be used to determine the correct type. You can fix this by adding an explicit type signature (I picked Int since you're apparently counting numbers):
_ -> case readMaybe line :: Maybe Int of
Finally a word about do notation: it's just syntactic sugar, you don't have to use it all the time. Instead of do return x you can simply write return x, and instead of
x <- getLineInt
return x
you can simply do
getLineInt
That makes things more readable:
getLineInt :: IO Int
getLineInt = do
putStrLn "Please enter your guess"
line <- getLine
case readMaybe line of
Just x -> return x
Nothing -> putStrLn "Invalid number entered" >> getLineInt
Why does this happen?
In your second function, it is clear that readMaybe line is used as String -> Maybe Int, since type inference notices that you use return x and therefore x must be an Int.
In your first function, you don't use the Maybe's value at all, you just want to check whether the read succeeded. However, since you didn't specify the type (neither explicit nor implicit with type inference), the type variable is ambiguous:
_ -> case readMaybe line of
There's an easy fix: annotate the type:
_ -> case readMaybe line :: Maybe Int of
By the way, this is exactly the same behaviour you encounter when you use read in ghci without any type context:
> read "1234"
<interactive>:10:1:
No instance for (Read a0) arising from a use of `read'
The type variable `a0' is ambiguous
As soon as you make the type clear everything is fine:
> read "1234" :: Int
1234
Making things clear
Now that we've seen why the error happens, lets make this program much simpler. First of all, we're going to use a custom readMaybe:
readMaybeInt :: String -> Maybe Int
readMaybeInt = readMaybe
Now how does one count numbers? Numbers are those words, where readMaybeInt doesn't return Nothing:
countNumbers :: String -> Int
countNumbers = length . filter isJust . map readMaybeInt . words
How does one now calculate the numbers in the standard input? We simply take input until one line is completely empty, map countNumbers on all those lines and then sum:
lineNumberCount :: IO Int
lineNumberCount =
getContents >>= return . sum . map countNumbers . takeWhile (/= "") . lines
If you're not used to the bind methods, that's basically
lineNumberCount :: IO Int
lineNumberCount = do
input <- getContents
return . sum . map countNumbers . takeWhile (/= "") . lines $ input
All in all we get the following terse solution:
import Control.Monad (liftM)
import Data.Maybe (isJust)
import Text.Read (readMaybe)
readMaybeInt :: String -> Maybe Int
readMaybeInt = readMaybe
countNumbers :: String -> Int
countNumbers = length . filter isJust . map readMaybeInt . words
lineNumberCount :: IO Int
lineNumberCount =
getContents >>= return . sum . map countNumbers . takeWhile (/= "") . lines
Now there's only one function working in the IO monad, and all functions are basically applications of standard functions. Note that getContents will close the handle to the standard input. If you want to use you're better of using something like
input :: String -> IO [String]
input delim = do
ln <- getLine
if ln == delim then return []
else input delim >>= return . (ln:)
which will extract lines until a line matching delim has been found. Note that you need to change lineNumberCount in this case:
lineNumberCount :: IO Int
lineNumberCount =
input "" >>= return . sum . map countNumbers
I'm trying to spew out randomly generated dice for every roll that the user plays. The user has 3 rolls per turn and he gets to play 5 turns (I haven't implemented this part yet and I would appreciate suggestions).
I'm also wondering how I can display the colors randomly. I have the list of tuples in place, but I reckon I need some function that uses random and that list to match those colors. I'm struggling as to how.
module Main where
import System.IO
import System.Random
import Data.List
diceColor = [("Black",1),("Green",2),("Purple",3),("Red",4),("White",5),("Yellow",6)]
{-
randomList :: (RandomGen g) -> Int -> g -> [Integer]
random 0 _ = []
randomList n generator = r : randomList (n-1) newGenerator
where (r, newGenerator) = randomR (1, 6) generator
-}
rand :: Int -> [Int] -> IO ()
rand n rlst = do
num <- randomRIO (1::Int, 6)
if n == 0
then doSomething rlst
else rand (n-1) (num:rlst)
doSomething x = putStrLn (show (sort x))
main :: IO ()
main = do
--hSetBuffering stdin LineBuffering
putStrLn "roll, keep, score?"
cmd <- getLine
doYahtzee cmd
--rand (read cmd) []
doYahtzee :: String -> IO ()
doYahtzee cmd = do
if cmd == "roll"
then rand 5 []
else do print "You won"
There's really a lot of errors sprinkled throughout this code, which suggests to me that you tried to build the whole thing at once. This is a recipe for disaster; you should be building very small things and testing them often in ghci.
Lecture aside, you might find the following facts interesting (in order of the associated errors in your code):
List is deprecated; you should use Data.List instead.
No let is needed for top-level definitions.
Variable names must begin with a lower case letter.
Class prerequisites are separated from a type by =>.
The top-level module block should mainly have definitions; you should associate every where clause (especially the one near randomList) with a definition by either indenting it enough not to be a new line in the module block or keeping it on the same line as the definition you want it to be associated with.
do introduces a block; those things in the block should be indented equally and more than their context.
doYahtzee is declared and used as if it has three arguments, but seems to be defined as if it only has one.
The read function is used to parse a String. Unless you know what it does, using read to parse a String from another String is probably not what you want to do -- especially on user input.
putStrLn only takes one argument, not four, and that argument has to be a String. However, making a guess at what you wanted here, you might like the (!!) and print functions.
dieRoll doesn't seem to be defined anywhere.
It's possible that there are other errors, as well. Stylistically, I recommend that you check out replicateM, randomRs, and forever. You can use hoogle to search for their names and read more about them; in the future, you can also use it to search for functions you wish existed by their type.