Why can't I use the type `Show a => [Something -> a]`? - haskell

I have a record type say
data Rec {
recNumber :: Int
, recName :: String
-- more fields of various types
}
And I want to write a toString function for Rec :
recToString :: Rec -> String
recToString r = intercalate "\t" $ map ($ r) fields
where fields = [show . recNumber, show . recName]
This works. fields has type [Rec -> String]. But I'm lazy and I would prefer writing
recToString r = intercalate "\t" $ map (\f -> show $ f r) fields
where fields = [recNumber, recName]
But this doesn't work. Intuitively I would say fields has type Show a => [Rec -> a] and this should be ok. But Haskell doesn't allow it.
I'd like to understand what is going on here. Would I be right if I said that in the first case I get a list of functions such that the 2 instances of show are actually not the same function, but Haskell is able to determine which is which at compile time (which is why it's ok).
[show . recNumber, show . recName]
^-- This is show in instance Show Number
^-- This is show in instance Show String
Whereas in the second case, I only have one literal use of show in the code, and that would have to refer to multiple instances, not determined at compile time ?
map (\f -> show $ f r) fields
^-- Must be both instances at the same time
Can someone help me understand this ? And also are there workarounds or type system expansions that allow this ?

The type signature doesn't say what you think it says.
This seems to be a common misunderstanding. Consider the function
foo :: Show a => Rec -> a
People frequently seem to think this means that "foo can return any type that it wants to, so long as that type supports Show". It doesn't.
What it actually means is that foo must be able to return any possible type, because the caller gets to choose what the return type should be.
A few moments' thought will reveal that foo actually cannot exist. There is no way to turn a Rec into any possible type that can ever exist. It can't be done.
People often try to do something like Show a => [a] to mean "a list of mixed types but they all have Show". That obviously doesn't work; this type actually means that the list elements can be any type, but they still have to be all the same.
What you're trying to do seems reasonable enough. Unfortunately, I think your first example is about as close as you can get. You could try using tuples and lenses to get around this. You could try using Template Haskell instead. But unless you've got a hell of a lot of fields, it's probably not even worth the effort.

The type you actually want is not:
Show a => [Rec -> a]
Any type declaration with unbound type variables has an implicit forall. The above is equivalent to:
forall a. Show a => [Rec -> a]
This isn't what you wan't, because the a must be specialized to a single type for the entire list. (By the caller, to any one type they choose, as MathematicalOrchid points out.) Because you want the a of each element in the list to be able to be instantiated differently... what you are actually seeking is an existential type.
[exists a. Show a => Rec -> a]
You are wishing for a form of subtyping that Haskell does not support very well. The above syntax is not supported at all by GHC. You can use newtypes to sort of accomplish this:
{-# LANGUAGE ExistentialQuantification #-}
newtype Showy = forall a. Show a => Showy a
fields :: [Rec -> Showy]
fields = [Showy . recNumber, Showy . recName]
But unfortunatley, that is just as tedious as converting directly to strings, isn't it?
I don't believe that lens is capable of getting around this particular weakness of the Haskell type system:
recToString :: Rec -> String
recToString r = intercalate "\t" $ toListOf (each . to fieldShown) fields
where fields = (recNumber, recName)
fieldShown f = show (f r)
-- error: Couldn't match type Int with [Char]
Suppose the fields do have the same type:
fields = [recNumber, recNumber]
Then it works, and Haskell figures out which show function instance to use at compile time; it doesn't have to look it up dynamically.
If you manually write out show each time, as in your original example, then Haskell can determine the correct instance for each call to show at compile time.
As for existentials... it depends on implementation, but presumably, the compiler cannot determine which instance to use statically, so a dynamic lookup will be used instead.

I'd like to suggest something very simple instead:
recToString r = intercalate "\t" [s recNumber, s recName]
where s f = show (f r)

All the elements of a list in Haskell must have the same type, so a list containing one Int and one String simply cannot exist. It is possible to get around this in GHC using existential types, but you probably shouldn't (this use of existentials is widely considered an anti-pattern, and it doesn't tend to perform terribly well). Another option would be to switch from a list to a tuple, and use some weird stuff from the lens package to map over both parts. It might even work.

Related

Haskell: Filtering by type

For any particular type A:
data A = A Int
is is possible to write this function?
filterByType :: a -> Maybe a
It should return Just . id if value of type A is given, and Nothing for value of any other types.
Using any means (GHC exts, TH, introspection, etc.)
NB. Since my last question about Haskell typesystem was criticized by the community as "terribly oversimplified", I feel the need to state, that this is a purely academic interest in Haskell typesystem limitations, without any particular task behind it that needs to be solved.
You are looking for cast at Data.Typeable
cast :: forall a b. (Typeable a, Typeable b) => a -> Maybe b
Related question here
Example
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data A = A Int deriving (Show, Typeable)
data B = B String deriving (Show, Typeable)
showByType :: Typeable a =>a ->String
showByType x = case (cast x, cast x) of
(Just (A y), _) ->"Type A: " ++ show y
(_, Just (B z)) ->"Type B: " ++ show z
then
> putStrLn $ showByType $ A 4
Type A: 4
> putStrLn $ showByType $ B "Peter"
Type B: "Peter"
>
Without Typeable derivation, no information exists about the underlying type, you can anyway perform some cast transformation like
import Unsafe.Coerce (unsafeCoerce)
filterByType :: a -> Maybe a
filterByType x = if SOMECHECK then Just (unsafeCoerce x) else Nothing
but, where is that information?
Then, you cannot write your function (or I don't know how) but in some context (binary memory inspection, template haskell, ...) may be.
No, you can't write this function. In Haskell, values without type class constraints are parametric in their type variables. This means we know that they have to behave exactly the same when instantiated at any particular type¹; in particular, and relevant to your question, this means they cannot inspect their type parameters.
This design means that that all types can be erased at run time, which GHC does in fact do. So even stepping outside of Haskell qua Haskell, unsafe tricks won't be able to help you, as the runtime representation is sort of parametric, too.
If you want something like this, josejuan's suggestion of using Typeable's cast operation is a good one.
¹ Modulo some details with seq.
A function of type a -> Maybe a is trivial. It's just Just. A function filterByType :: a -> Maybe b is impossible.
This is because once you've compiled your program, a and b are gone. There is no run time type information in Haskell, at all.
However, as mentioned in another answer you can write a function:
cast :: (Typeable a, Typeable b) => a -> Maybe b
The reason you can write this is because the constraint Typeable a tells the compiler to, where ever this function is called, pass along a run-time dictionary of values specified by Typeable. These are useful operations that can build up and tear down a great range of Haskell types. The compiler is incredibly smart about this and can pass in the right dictionary for virtually any type you use the function on.
Without this run-time dictionary, however, you cannot do anything. Without a constraint of Typeable, you simply do not get the run-time dictionary.
All that aside, if you don't mind my asking, what exactly do you want this function for? Filtering by a type is not actually useful in Haskell, so if you're trying to do that, you're probably trying to solve something the wrong way.

Showing the type A -> A

data A = Num Int
| Fun (A -> A) String deriving Show
instance Show (Fun (A -> A) String) where
show (Fun f s) = s
I would like to have an attribute for a function A -> A to print it, therefore there is a String type parameter to Fun. When I load this into ghci, I get
/home/kmels/tmp/show-abs.hs:4:16:
Not in scope: type constructor or class `Fun'
I guess this could be achieved by adding a new data type
data FunWithAttribute = FA (A -> A) String
adding data A = Num Int | Fun FunWithAttribute and writing an instance Show FunWithAttribute. Is the additional data type avoidable?
Instances are defined for types as a whole, not individual constructors, which is why it complains about Fun not being a type.
I assume your overall goal is to have a Show instance for A, which can't be derived because functions can't (in general) have a Show instance. You have a couple options here:
Write your own Show instance outright:
That is, something like:
instance Show A where
show (Num n) = "Num " ++ show n
show (Fun _ s) = s
In many cases, this makes the most sense. But sometimes it's nicer to derive Show, especially on complex recursive types where only one case of many is not automatically Show-able.
Make A derivable:
You can only derive Show for types that contain types that themselves have Show instances. There's no instance for A -> A, so deriving doesn't work. But you can write one that uses a placeholder of some sort:
instance Show (A -> A) where
show _ = "(A -> A)"
Or even just an empty string, if you prefer.
Note that this requires the FlexibleInstances language extension; it's one of the most harmless and commonly used extensions, is supported by multiple Haskell implementations, and the restrictions it relaxes are (in my opinion) a bit silly to begin with, so there's little reason to avoid it.
An alternate approach would be to have a wrapper type, as you mention in the question. You could even make this more generic:
data ShowAs a = ShowAs a String
instance Show (ShowAs a) where
show (ShowAs _ s) = s
...and then use (ShowAs (A -> A)) in the Fun constructor. This makes it a bit awkward by forcing you to do extra pattern matching any time you want to use the wrapped type, but it gives you lots of flexibility to "tag" stuff with how it should be displayed, e.g. showId = id `ShowAs` "id" or suchlike.
Perhaps I'm not following what you are asking for. But the above code could be written like this in order to compile:
data A = Num Int
| Fun (A -> A) String
instance Show A where
show (Fun f s) = s
show (Num i) = show i
Some explanation
It looked like you were trying to write a show instance for a constructor (Fun). Class instances are written for the entire data type (there might be exceptions, dunno). So you need to write one show matching on each constructor as part of the instance. Num and Fun are each constructors of the data type A.
Also, deriving can't be used unless each parameter of each constructor is, in turn, member of, in this case, Show. Now, your example is a bit special since it wants to Show (A -> A). How to show a function is somewhat explained in the other responses, although I don't think there is an exhaustive way. The other examples really just "show" the type or some place holder.
A Show instance (or any class instance) needs to be defined for a data type, not for a type constructor. That is, you need simply
instance Show A where
Apparently, you're trying to get this instance with the deriving, but that doesn't work because Haskell doesn't know how to show A->A. Now it seems you don't even want to show that function, but deriving Show instances always show all available information, so you can't use that.
The obvious, and best, solution to your problem is worldsayshi's: don't use deriving at all, but define a proper instance yourself. Alternatively, you can define a pseudo-instance for A->A and then use deriving:
{-# LANGUAGE FlexibleInstances #-}
data A = Num Int | Fun (A->A) String deriving(Show)
instance Show (A->A) where show _ = ""
This works like
Prelude> Fun (const $ Num 3) "bla"
Fun "bla"

Programmatic type annotations in Haskell

When metaprogramming, it may be useful (or necessary) to pass along to Haskell's type system information about types that's known to your program but not inferable in Hindley-Milner. Is there a library (or language extension, etc) that provides facilities for doing this—that is, programmatic type annotations—in Haskell?
Consider a situation where you're working with a heterogenous list (implemented using the Data.Dynamic library or existential quantification, say) and you want to filter the list down to a bog-standard, homogeneously typed Haskell list. You can write a function like
import Data.Dynamic
import Data.Typeable
dynListToList :: (Typeable a) => [Dynamic] -> [a]
dynListToList = (map fromJust) . (filter isJust) . (map fromDynamic)
and call it with a manual type annotation. For example,
foo :: [Int]
foo = dynListToList [ toDyn (1 :: Int)
, toDyn (2 :: Int)
, toDyn ("foo" :: String) ]
Here foo is the list [1, 2] :: [Int]; that works fine and you're back on solid ground where Haskell's type system can do its thing.
Now imagine you want to do much the same thing but (a) at the time you write the code you don't know what the type of the list produced by a call to dynListToList needs to be, yet (b) your program does contain the information necessary to figure this out, only (c) it's not in a form accessible to the type system.
For example, say you've randomly selected an item from your heterogenous list and you want to filter the list down by that type. Using the type-checking facilities supplied by Data.Typeable, your program has all the information it needs to do this, but as far as I can tell—this is the essence of the question—there's no way to pass it along to the type system. Here's some pseudo-Haskell that shows what I mean:
import Data.Dynamic
import Data.Typeable
randList :: (Typeable a) => [Dynamic] -> IO [a]
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (dynListToList dl :: [<tr>]) -- This thing should have the type
-- represented by `tr`
(Assume randItem selects a random item from a list.)
Without a type annotation on the argument of return, the compiler will tell you that it has an "ambiguous type" and ask you to provide one. But you can't provide a manual type annotation because the type is not known at write-time (and can vary); the type is known at run-time, however—albeit in a form the type system can't use (here, the type needed is represented by the value tr, a TypeRep—see Data.Typeable for details).
The pseudo-code :: [<tr>] is the magic I want to happen. Is there any way to provide the type system with type information programatically; that is, with type information contained in a value in your program?
Basically I'm looking for a function with (pseudo-) type ??? -> TypeRep -> a that takes a value of a type unknown to Haskell's type system and a TypeRep and says, "Trust me, compiler, I know what I'm doing. This thing has the value represented by this TypeRep." (Note that this is not what unsafeCoerce does.)
Or is there something completely different that gets me the same place? For example, I can imagine a language extension that permits assignment to type variables, like a souped-up version of the extension enabling scoped type variables.
(If this is impossible or highly impractical,—e.g., it requires packing a complete GHCi-like interpreter into the executable—please try to explain why.)
No, you can't do this. The long and short of it is that you're trying to write a dependently-typed function, and Haskell isn't a dependently typed language; you can't lift your TypeRep value to a true type, and so there's no way to write down the type of your desired function. To explain this in a little more detail, I'm first going to show why the way you've phrased the type of randList doesn't really make sense. Then, I'm going to explain why you can't do what you want. Finally, I'll briefly mention a couple thoughts on what to actually do.
Existentials
Your type signature for randList can't mean what you want it to mean. Remembering that all type variables in Haskell are universally quantified, it reads
randList :: forall a. Typeable a => [Dynamic] -> IO [a]
Thus, I'm entitled to call it as, say, randList dyns :: IO [Int] anywhere I want; I must be able to provide a return value for all a, not simply for some a. Thinking of this as a game, it's one where the caller can pick a, not the function itself. What you want to say (this isn't valid Haskell syntax, although you can translate it into valid Haskell by using an existential data type1) is something more like
randList :: [Dynamic] -> (exists a. Typeable a => IO [a])
This promises that the elements of the list are of some type a, which is an instance of Typeable, but not necessarily any such type. But even with this, you'll have two problems. First, even if you could construct such a list, what could you do with it? And second, it turns out that you can't even construct it in the first place.
Since all that you know about the elements of the existential list is that they're instances of Typeable, what can you do with them? Looking at the documentation, we see that there are only two functions2 which take instances of Typeable:
typeOf :: Typeable a => a -> TypeRep, from the type class itself (indeed, the only method therein); and
cast :: (Typeable a, Typeable b) => a -> Maybe b (which is implemented with unsafeCoerce, and couldn't be written otherwise).
Thus, all that you know about the type of the elements in the list is that you can call typeOf and cast on them. Since we'll never be able to usefully do anything else with them, our existential might just as well be (again, not valid Haskell)
randList :: [Dynamic] -> IO [(TypeRep, forall b. Typeable b => Maybe b)]
This is what we get if we apply typeOf and cast to every element of our list, store the results, and throw away the now-useless existentially typed original value. Clearly, the TypeRep part of this list isn't useful. And the second half of the list isn't either. Since we're back to a universally-quantified type, the caller of randList is once again entitled to request that they get a Maybe Int, a Maybe Bool, or a Maybe b for any (typeable) b of their choosing. (In fact, they have slightly more power than before, since they can instantiate different elements of the list to different types.) But they can't figure out what type they're converting from unless they already know it—you've still lost the type information you were trying to keep.
And even setting aside the fact that they're not useful, you simply can't construct the desired existential type here. The error arises when you try to return the existentially-typed list (return $ dynListToList dl). At what specific type are you calling dynListToList? Recall that dynListToList :: forall a. Typeable a => [Dynamic] -> [a]; thus, randList is responsible for picking which a dynListToList is going to use. But it doesn't know which a to pick; again, that's the source of the question! So the type that you're trying to return is underspecified, and thus ambiguous.3
Dependent types
OK, so what would make this existential useful (and possible)? Well, we actually have slightly more information: not only do we know there's some a, we have its TypeRep. So maybe we can package that up:
randList :: [Dynamic] -> (exists a. Typeable a => IO (TypeRep,[a]))
This isn't quite good enough, though; the TypeRep and the [a] aren't linked at all. And that's exactly what you're trying to express: some way to link the TypeRep and the a.
Basically, your goal is to write something like
toType :: TypeRep -> *
Here, * is the kind of all types; if you haven't seen kinds before, they are to types what types are to values. * classifies types, * -> * classifies one-argument type constructors, etc. (For instance, Int :: *, Maybe :: * -> *, Either :: * -> * -> *, and Maybe Int :: *.)
With this, you could write (once again, this code isn't valid Haskell; in fact, it really bears only a passing resemblance to Haskell, as there's no way you could write it or anything like it within Haskell's type system):
randList :: [Dynamic] -> (exists (tr :: TypeRep).
Typeable (toType tr) => IO (tr, [toType tr]))
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (tr, dynListToList dl :: [toType tr])
-- In fact, in an ideal world, the `:: [toType tr]` signature would be
-- inferable.
Now, you're promising the right thing: not that there exists some type which classifies the elements of the list, but that there exists some TypeRep such that its corresponding type classifies the elements of the list. If only you could do this, you would be set. But writing toType :: TypeRep -> * is completely impossible in Haskell: doing this requires a dependently-typed language, since toType tr is a type which depends on a value.
What does this mean? In Haskell, it's perfectly acceptable for values to depend on other values; this is what a function is. The value head "abc", for instance, depends on the value "abc". Similarly, we have type constructors, so it's acceptable for types to depend on other types; consider Maybe Int, and how it depends on Int. We can even have values which depend on types! Consider id :: a -> a. This is really a family of functions: id_Int :: Int -> Int, id_Bool :: Bool -> Bool, etc. Which one we have depends on the type of a. (So really, id = \(a :: *) (x :: a) -> x; although we can't write this in Haskell, there are languages where we can.)
Crucially, however, we can never have a type that depends on a value. We might want such a thing: imagine Vec 7 Int, the type of length-7 lists of integers. Here, Vec :: Nat -> * -> *: a type whose first argument must be a value of type Nat. But we can't write this sort of thing in Haskell.4 Languages which support this are called dependently-typed (and will let us write id as we did above); examples include Coq and Agda. (Such languages often double as proof assistants, and are generally used for research work as opposed to writing actual code. Dependent types are hard, and making them useful for everyday programming is an active area of research.)
Thus, in Haskell, we can check everything about our types first, throw away all that information, and then compile something that refers only to values. In fact, this is exactly what GHC does; since we can never check types at run-time in Haskell, GHC erases all the types at compile-time without changing the program's run-time behavior. This is why unsafeCoerce is easy to implement (operationally) and completely unsafe: at run-time, it's a no-op, but it lies to the type system. Consequently, something like toType is completely impossible to implement in the Haskell type system.
In fact, as you noticed, you can't even write down the desired type and use unsafeCoerce. For some problems, you can get away with this; we can write down the type for the function, but only implement it with by cheating. That's exactly how fromDynamic works. But as we saw above, there's not even a good type to give to this problem from within Haskell. The imaginary toType function allows you to give the program a type, but you can't even write down toType's type!
What now?
So, you can't do this. What should you do? My guess is that your overall architecture isn't ideal for Haskell, although I haven't seen it; Typeable and Dynamic don't actually show up that much in Haskell programs. (Perhaps you're "speaking Haskell with a Python accent", as they say.) If you only have a finite set of data types to deal with, you might be able to bundle things into a plain old algebraic data type instead:
data MyType = MTInt Int | MTBool Bool | MTString String
Then you can write isMTInt, and just use filter isMTInt, or filter (isSameMTAs randomMT).
Although I don't know what it is, there's probably a way you could unsafeCoerce your way through this problem. But frankly, that's not a good idea unless you really, really, really, really, really, really know what you're doing. And even then, it's probably not. If you need unsafeCoerce, you'll know, it won't just be a convenience thing.
I really agree with Daniel Wagner's comment: you're probably going to want to rethink your approach from scratch. Again, though, since I haven't seen your architecture, I can't say what that will mean. Maybe there's another Stack Overflow question in there, if you can distill out a concrete difficulty.
1 That looks like the following:
{-# LANGUAGE ExistentialQuantification #-}
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
However, since none of this code compiles anyway, I think writing it out with exists is clearer.
2 Technically, there are some other functions which look relevant, such as toDyn :: Typeable a => a -> Dynamic and fromDyn :: Typeable a => Dynamic -> a -> a. However, Dynamic is more or less an existential wrapper around Typeables, relying on typeOf and TypeReps to know when to unsafeCoerce (GHC uses some implementation-specific types and unsafeCoerce, but you could do it this way, with the possible exception of dynApply/dynApp), so toDyn doesn't do anything new. And fromDyn doesn't really expect its argument of type a; it's just a wrapper around cast. These functions, and the other similar ones, don't provide any extra power that isn't available with just typeOf and cast. (For instance, going back to a Dynamic isn't very useful for your problem!)
3 To see the error in action, you can try to compile the following complete Haskell program:
{-# LANGUAGE ExistentialQuantification #-}
import Data.Dynamic
import Data.Typeable
import Data.Maybe
randItem :: [a] -> IO a
randItem = return . head -- Good enough for a short and non-compiling example
dynListToList :: Typeable a => [Dynamic] -> [a]
dynListToList = mapMaybe fromDynamic
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
randList dl = do
tr <- randItem $ map dynTypeRep dl
return . TypeableList $ dynListToList dl -- Error! Ambiguous type variable.
Sure enough, if you try to compile this, you get the error:
SO12273982.hs:17:27:
Ambiguous type variable `a0' in the constraint:
(Typeable a0) arising from a use of `dynListToList'
Probable fix: add a type signature that fixes these type variable(s)
In the second argument of `($)', namely `dynListToList dl'
In a stmt of a 'do' block: return . TypeableList $ dynListToList dl
In the expression:
do { tr <- randItem $ map dynTypeRep dl;
return . TypeableList $ dynListToList dl }
But as is the entire point of the question, you can't "add a type signature that fixes these type variable(s)", because you don't know what type you want.
4 Mostly. GHC 7.4 has support for lifting types to kinds and for kind polymorphism; see section 7.8, "Kind polymorphism and promotion", in the GHC 7.4 user manual. This doesn't make Haskell dependently typed—something like TypeRep -> * example is still out5—but you will be able to write Vec by using very expressive types that look like values.
5 Technically, you could now write down something which looks like it has the desired type: type family ToType :: TypeRep -> *. However, this takes a type of the promoted kind TypeRep, and not a value of the type TypeRep; and besides, you still wouldn't be able to implement it. (At least I don't think so, and I can't see how you would—but I am not an expert in this.) But at this point, we're pretty far afield.
What you're observing is that the type TypeRep doesn't actually carry any type-level information along with it; only term-level information. This is a shame, but we can do better when we know all the type constructors we care about. For example, suppose we only care about Ints, lists, and function types.
{-# LANGUAGE GADTs, TypeOperators #-}
import Control.Monad
data a :=: b where Refl :: a :=: a
data Dynamic where Dynamic :: TypeRep a -> a -> Dynamic
data TypeRep a where
Int :: TypeRep Int
List :: TypeRep a -> TypeRep [a]
Arrow :: TypeRep a -> TypeRep b -> TypeRep (a -> b)
class Typeable a where typeOf :: TypeRep a
instance Typeable Int where typeOf = Int
instance Typeable a => Typeable [a] where typeOf = List typeOf
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf = Arrow typeOf typeOf
congArrow :: from :=: from' -> to :=: to' -> (from -> to) :=: (from' -> to')
congArrow Refl Refl = Refl
congList :: a :=: b -> [a] :=: [b]
congList Refl = Refl
eq :: TypeRep a -> TypeRep b -> Maybe (a :=: b)
eq Int Int = Just Refl
eq (Arrow from to) (Arrow from' to') = liftM2 congArrow (eq from from') (eq to to')
eq (List t) (List t') = liftM congList (eq t t')
eq _ _ = Nothing
eqTypeable :: (Typeable a, Typeable b) => Maybe (a :=: b)
eqTypeable = eq typeOf typeOf
toDynamic :: Typeable a => a -> Dynamic
toDynamic a = Dynamic typeOf a
-- look ma, no unsafeCoerce!
fromDynamic_ :: TypeRep a -> Dynamic -> Maybe a
fromDynamic_ rep (Dynamic rep' a) = case eq rep rep' of
Just Refl -> Just a
Nothing -> Nothing
fromDynamic :: Typeable a => Dynamic -> Maybe a
fromDynamic = fromDynamic_ typeOf
All of the above is pretty standard. For more on the design strategy, you'll want to read about GADTs and singleton types. Now, the function you want to write follows; the type is going to look a bit daft, but bear with me.
-- extract only the elements of the list whose type match the head
firstOnly :: [Dynamic] -> Dynamic
firstOnly [] = Dynamic (List Int) []
firstOnly (Dynamic rep v:xs) = Dynamic (List rep) (v:go xs) where
go [] = []
go (Dynamic rep' v:xs) = case eq rep rep' of
Just Refl -> v : go xs
Nothing -> go xs
Here we've picked a random element (I rolled a die, and it came up 1) and extracted only the elements that have a matching type from the list of dynamic values. Now, we could have done the same thing with regular boring old Dynamic from the standard libraries; however, what we couldn't have done is used the TypeRep in a meaningful way. I now demonstrate that we can do so: we'll pattern match on the TypeRep, and then use the enclosed value at the specific type the TypeRep tells us it is.
use :: Dynamic -> [Int]
use (Dynamic (List (Arrow Int Int)) fs) = zipWith ($) fs [1..]
use (Dynamic (List Int) vs) = vs
use (Dynamic Int v) = [v]
use (Dynamic (Arrow (List Int) (List (List Int))) f) = concat (f [0..5])
use _ = []
Note that on the right-hand sides of these equations, we are using the wrapped value at different, concrete types; the pattern match on the TypeRep is actually introducing type-level information.
You want a function that chooses a different type of values to return based on runtime data. Okay, great. But the whole purpose of a type is to tell you what operations can be performed on a value. When you don't know what type will be returned from a function, what do you do with the values it returns? What operations can you perform on them? There are two options:
You want to read the type, and perform some behaviour based on which type it is. In this case you can only cater for a finite list of types known in advance, essentially by testing "is it this type? then we do this operation...". This is easily possible in the current Dynamic framework: just return the Dynamic objects, using dynTypeRep to filter them, and leave the application of fromDynamic to whoever wants to consume your result. Moreover, it could well be possible without Dynamic, if you don't mind setting the finite list of types in your producer code, rather than your consumer code: just use an ADT with a constructor for each type, data Thing = Thing1 Int | Thing2 String | Thing3 (Thing,Thing). This latter option is by far the best if it is possible.
You want to perform some operation that works across a family of types, potentially some of which you don't know about yet, e.g. by using type class operations. This is trickier, and it's tricky conceptually too, because your program is not allowed to change behaviour based on whether or not some type class instance exists – it's an important property of the type class system that the introduction of a new instance can either make a program type check or stop it from type checking, but it can't change the behaviour of a program. Hence you can't throw an error if your input list contains inappropriate types, so I'm really not sure that there's anything you can do that doesn't essentially involve falling back to the first solution at some point.

Why can't I use record selectors with an existentially quantified type?

When using Existential types, we have to use a pattern-matching syntax for extracting the foralled value. We can't use the ordinary record selectors as functions. GHC reports an error and suggest using pattern-matching with this definition of yALL:
{-# LANGUAGE ExistentialQuantification #-}
data ALL = forall a. Show a => ALL { theA :: a }
-- data ok
xALL :: ALL -> String
xALL (ALL a) = show a
-- pattern matching ok
-- ABOVE: heaven
-- BELOW: hell
yALL :: ALL -> String
yALL all = show $ theA all
-- record selector failed
forall.hs:11:19:
Cannot use record selector `theA' as a function due to escaped type variables
Probable fix: use pattern-matching syntax instead
In the second argument of `($)', namely `theA all'
In the expression: show $ theA all
In an equation for `yALL': yALL all = show $ theA all
Some of my data take more than 5 elements. It's hard to maintain the code if I
use pattern-matching:
func1 (BigData _ _ _ _ elemx _ _) = func2 elemx
Is there a good method to make code like that maintainable or to wrap it up so that I can use some kind of selectors?
Existential types work in a more elaborate manner than regular types. GHC is (rightly) forbidding you from using theA as a function. But imagine there was no such prohibition. What type would that function have? It would have to be something like this:
-- Not a real type signature!
theA :: ALL -> t -- for a fresh type t on each use of theA; t is an instance of Show
To put it very crudely, forall makes GHC "forget" the type of the constructor's arguments; all that the type system knows is that this type is an instance of Show. So when you try to extract the value of the constructor's argument, there is no way to recover the original type.
What GHC does, behind the scenes, is what the comment to the fake type signature above says—each time you pattern match against the ALL constructor, the variable bound to the constructor's value is assigned a unique type that's guaranteed to be different from every other type. Take for example this code:
case ALL "foo" of
ALL x -> show x
The variable x gets a unique type that is distinct from every other type in the program and cannot be matched with any type variable. These unique types are not allowed to escape to the top level—which is the reason why theA cannot be used as a function.
You can use record syntax in pattern matching,
func1 BigData{ someField = elemx } = func2 elemx
works and is much less typing for huge types.

Best way to implement ad-hoc polymorphism in Haskell?

I have a polymorphic function like:
convert :: (Show a) => a -> String
convert = " [label=" ++ (show a) ++ "]"
But sometimes I want to pass it a Data.Map and do some more fancy key value conversion. I know I can't pattern match here because Data.Map is an abstract data type (according to this similar SO question), but I have been unsuccessful using guards to this end, and I'm not sure if ViewPatterns would help here (and would rather avoid them for portability).
This is more what I want:
import qualified Data.Map as M
convert :: (Show a) => a -> String
convert a
| M.size \=0 = processMap2FancyKVString a -- Heres a Data.Map
| otherwise = " [label=" ++ (show a) ++ "]" -- Probably a string
But this doesn't work because M.size can't take anything other than a Data.Map.
Specifically, I am trying to modify the sl utility function in the Functional Graph Library in order to handle coloring and other attributes of edges in GraphViz output.
Update
I wish I could accept all three answers by TomMD, Antal S-Z, and luqui to this question as they all understood what I really was asking. I would say:
Antal S-Z gave the most 'elegant' solution as applied to the FGL but would also require the most rewriting and rethinking to implement in personal problem.
TomMD gave a great answer that lies somewhere between Antal S-Z's and luqui's in terms of applicability vs. correctness. It also is direct and to the point which I appreciate greatly and why I chose his answer.
luqui gave the best 'get it working quickly' answer which I will probably be using in practice (as I'm a grad student, and this is just some throwaway code to test some ideas). The reason I didn't accept was because TomMD's answer will probably help other people in more general situations better.
With that said, they are all excellent answers and the above classification is a gross simplification. I've also updated the question title to better represent my question (Thanks Thanks again for broadening my horizons everyone!
What you just explained is you want a function that behaves differently based on the type of the input. While you could use a data wrapper, thus closing the function for all time:
data Convertable k a = ConvMap (Map k a) | ConvOther a
convert (ConvMap m) = ...
convert (ConvOther o) = ...
A better way is to use type classes, thus leaving the convert function open and extensible while preventing users from inputting non-sensical combinations (ex: ConvOther M.empty).
class (Show a) => Convertable a where
convert :: a -> String
instance Convertable (M.Map k a) where
convert m = processMap2FancyKVString m
newtype ConvWrapper a = CW a
instance Convertable (ConvWrapper a) where
convert (CW a) = " [label=" ++ (show a) ++ "]"
In this manner you can have the instances you want used for each different data type and every time a new specialization is needed you can extend the definition of convert simply by adding another instance Convertable NewDataType where ....
Some people might frown at the newtype wrapper and suggest an instance like:
instance Convertable a where
convert ...
But this will require the strongly discouraged overlapping and undecidable instances extensions for very little programmer convenience.
You may not be asking the right thing. I'm going to assume that you either have a graph whose nodes are all Maps or you have a graph whose nodes are all something else. If you need a graph where Maps and non-maps coexist, then there is more to your problem (but this solution will still help). See the end of my answer in that case.
The cleanest answer here is simply to use different convert functions for different types, and have any type that depends on convert take it as an argument (a higher order function).
So in GraphViz (avoiding redesigning this crappy code) I would modify the graphviz function to look like:
graphvizWithLabeler :: (a -> String) -> ... -> String
graphvizWithLabeler labeler ... =
...
where sa = labeler a
And then have graphviz trivially delegate to it:
graphviz = graphvizWithLabeler sl
Then graphviz continues to work as before, and you have graphvizWithLabeler when you need the more powerful version.
So for graphs whose nodes are Maps, use graphvizWithLabeler processMap2FancyKVString, otherwise use graphviz. This decision can be postponed as long as possible by taking relevant things as higher order functions or typeclass methods.
If you need to have Maps and other things coexisting in the same graph, then you need to find a single type inhabited by everything a node could be. This is similar to TomMD's suggestion. For example:
data NodeType
= MapNode (Map.Map Foo Bar)
| IntNode Int
Parameterized to the level of genericity you need, of course. Then your labeler function should decide what to do in each of those cases.
A key point to remember is that Haskell has no downcasting. A function of type foo :: a -> a has no way of knowing anything about what was passed to it (within reason, cool your jets pedants). So the function you were trying to write is impossible to express in Haskell. But as you can see, there are other ways to get the job done, and they turn out to be more modular.
Did that tell you what you needed to know to accomplish what you wanted?
Your problem isn't actually the same as in that question. In the question you linked to, Derek Thurn had a function which he knew took a Set a, but couldn't pattern-match. In your case, you're writing a function which will take any a which has an instance of Show; you can't tell what type you're looking at at runtime, and can only rely on the functions which are available to any Showable type. If you want to have a function do different things for different data types, this is known as ad-hoc polymorphism, and is supported in Haskell with type classes like Show. (This is as opposed to parametric polymorphism, which is when you write a function like head (x:_) = x which has type head :: [a] -> a; the unconstrained universal a is what makes that parametric instead.) So to do what you want, you'll have to create your own type class, and instantiate it when you need it. However, it's a little more complicated than usual, because you want to make everything that's part of Show implicitly part of your new type class. This requires some potentially dangerous and probably unnecessarily powerful GHC extensions. Instead, why not simplify things? You can probably figure out the subset of types which you actually need to print in this manner. Once you do that, you can write the code as follows:
{-# LANGUAGE TypeSynonymInstances #-}
module GraphvizTypeclass where
import qualified Data.Map as M
import Data.Map (Map)
import Data.List (intercalate) -- For output formatting
surround :: String -> String -> String -> String
surround before after = (before ++) . (++ after)
squareBrackets :: String -> String
squareBrackets = surround "[" "]"
quoted :: String -> String
quoted = let replace '"' = "\\\""
replace c = [c]
in surround "\"" "\"" . concatMap replace
class GraphvizLabel a where
toGVItem :: a -> String
toGVLabel :: a -> String
toGVLabel = squareBrackets . ("label=" ++) . toGVItem
-- We only need to print Strings, Ints, Chars, and Maps.
instance GraphvizLabel String where
toGVItem = quoted
instance GraphvizLabel Int where
toGVItem = quoted . show
instance GraphvizLabel Char where
toGVItem = toGVItem . (: []) -- Custom behavior: no single quotes.
instance (GraphvizLabel k, GraphvizLabel v) => GraphvizLabel (Map k v) where
toGVItem = let kvfn k v = ((toGVItem k ++ "=" ++ toGVItem v) :)
in intercalate "," . M.foldWithKey kvfn []
toGVLabel = squareBrackets . toGVItem
In this setup, everything which we can output to Graphviz is an instance of GraphvizLabel; the toGVItem function quotes things, and toGVLabel puts the whole thing in square brackets for immediate use. (I might have screwed some of the formatting you want up, but that part's just an example.) You then declare what's an instance of GraphvizLabel, and how to turn it into an item. The TypeSynonymInstances flag just lets us write instance GraphvizLabel String instead of instance GraphvizLabel [Char]; it's harmless.
Now, if you really need everything with a Show instance to be an instance of GraphvizLabel as well, there is a way. If you don't really need this, then don't use this code! If you do need to do this, you have to bring to bear the scarily-named UndecidableInstances and OverlappingInstances language extensions (and the less scarily named FlexibleInstances). The reason for this is that you have to assert that everything which is Showable is a GraphvizLabel—but this is hard for the compiler to tell. For instance, if you use this code and write toGVLabel [1,2,3] at the GHCi prompt, you'll get an error, since 1 has type Num a => a, and Char might be an instance of Num! You have to explicitly specify toGVLabel ([1,2,3] :: [Int]) to get it to work. Again, this is probably unnecessarily heavy machinery to bring to bear on your problem. Instead, if you can limit the things you think will be converted to labels, which is very likely, you can just specify those things instead! But if you really want Showability to imply GraphvizLabelability, this is what you need:
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances
, UndecidableInstances, OverlappingInstances #-}
-- Leave the module declaration, imports, formatting code, and class declaration
-- the same.
instance GraphvizLabel String where
toGVItem = quoted
instance Show a => GraphvizLabel a where
toGVItem = quoted . show
instance (GraphvizLabel k, GraphvizLabel v) => GraphvizLabel (Map k v) where
toGVItem = let kvfn k v = ((toGVItem k ++ "=" ++ toGVItem v) :)
in intercalate "," . M.foldWithKey kvfn []
toGVLabel = squareBrackets . toGVItem
Notice that your specific cases (GraphvizLabel String and GraphvizLabel (Map k v)) stay the same; you've just collapsed the Int and Char cases into the GraphvizLabel a case. Remember, UndecidableInstances means exactly what it says: the compiler cannot tell if instances are checkable or will instead make the typechecker loop! In this case, I am reasonably sure that everything here is in fact decidable (but if anybody notices where I'm wrong, please let me know). Nevertheless, using UndecidableInstances should always be approached with caution.

Resources