How can I make this code compile ?
trait Pair<'a, A, B> {
fn first_ref(&'a self) -> &'a A;
fn second_ref(&'a self) -> &'a B;
};
struct PairOwned<A, B> {
first: A,
second: B,
}
// Only implemented for the cases we are interested in ...
impl<'a, A, B> Pair<'a, A, B> for &'a PairOwned<&'a A,&'a B> {
fn first_ref(&'a self) -> &'a A {
self.first
}
fn second_ref(&'a self) -> &'a B {
self.second
}
}
impl<'a, A, B> Pair<'a, A, B> for &'a(&'a A, &'a B) {
fn first_ref(&'a self) -> &'a A {
self.0
}
fn second_ref(&'a self) -> &'a B {
self.1
}
}
fn pair_transformer<'a, I, T>(pairs: I) -> String
where T: Pair<'a, &'a Str, &'a Str> + 'a,
I: Iterator<Item=T> {
let mut s = String::new();
for pair in pairs {
s = s
+ pair.first_ref().as_slice()
+ pair.second_ref().as_slice();
}
s
}
pair_transformer([PairOwned { first: "a", second: "b" }].iter());
pair_transformer([("a", "b")].iter());
The compiler says:
tests/lang.rs:902:5: 902:21 error: the trait `pair_trait_for_iteration::Pair<'_, &core::str::Str, &core::str::Str>` is not implemented for the type `&pair_trait_for_iteration::PairOwned<&str, &str>` [E0277]
tests/lang.rs:902 pair_transformer([PairOwned { first: "a", second: "b" }].iter());
^~~~~~~~~~~~~~~~
tests/lang.rs:903:5: 903:21 error: the trait `pair_trait_for_iteration::Pair<'_, &core::str::Str, &core::str::Str>` is not implemented for the type `&(&str, &str)` [E0277]
tests/lang.rs:903 pair_transformer([("a", "b")].iter());
Notes
I have the feeling it is somehow related to the various ways to specify what a trait should be implemented for, something I have not fully understood yet.
// As stated in the answer at
// http://stackoverflow.com/questions/28283641/what-is-the-preferred-way-to-implement-the-add-trait-efficiently-for-vector-type
impl Add<YourType> for YourType { ... }
impl<'r> Add<YourType> for &'r YourType { ... }
impl<'a> Add<&'a YourType> for YourType { ... }
impl<'r, 'a> Add<&'a YourType> for &'r YourType { ... }
Using rustc 1.0.0-nightly (522d09dfe 2015-02-19) (built 2015-02-19)
There are a couple of mistakes in your code:
You probably want to implement your trait directly for your type, as the methods defined by the trait take the trait by reference (which is not the case of the Add trait in the other post you linked)
Your use of OwnedPair { first: "a", second: "b"} isn't actually owned: your type will be OwnedPair<&'static str, &'static str> so I included examples with String (which are owned) as I assume that is what you wanted
The items returned by your iterator are actually references, so you probably want to bind I to Iterator<Item=&'a T>
As I tried to be as generic as possible (and for the example to compile with both OwnedPair<&str,&str> and OwnedPair<String,String>) I used the trait std::borrow::Borrow, which basically means that it is possible to borrow a reference to the type T from the type by which this trait is implemented.
I also needed to use ?Sized as a bound for most type parameters. This allows to use types which size is not known at compile time, and will be used behind a "fat pointer". More information in this blog post (a little bit old)
Here is the full corrected code (runnable in playpen)
use std::borrow::Borrow;
trait Pair<'a, A: ?Sized, B: ?Sized> {
fn first_ref(&'a self) -> &'a A;
fn second_ref(&'a self) -> &'a B;
}
struct PairOwned<A, B> {
first: A,
second: B,
}
// Only implemented for the cases we are interested in ...
impl<'a, ARef: ?Sized, BRef: ?Sized, A: Borrow<ARef>, B: Borrow<BRef>> Pair<'a, ARef, BRef> for PairOwned<A,B> {
fn first_ref(&'a self) -> &'a ARef {
self.first.borrow()
}
fn second_ref(&'a self) -> &'a BRef {
self.second.borrow()
}
}
// It should also be possible to be more generic here with Borrow
// But I wanted to leave your original implementation
impl<'a, A: ?Sized, B: ?Sized> Pair<'a, A, B> for (&'a A, &'a B) {
fn first_ref(&'a self) -> &'a A {
self.0
}
fn second_ref(&'a self) -> &'a B {
self.1
}
}
fn pair_transformer<'a, I, T>(pairs: I) -> String
where T: Pair<'a, str, str> + 'a,
I: Iterator<Item=&'a T> {
let mut s = String::new();
for pair in pairs {
s = s
+ pair.first_ref().as_slice()
+ pair.second_ref().as_slice();
}
s
}
fn main() {
pair_transformer([PairOwned { first: "a".to_string(), second: "b".to_string() }].iter());
pair_transformer([PairOwned { first: "a".to_string(), second: "b" }].iter()); // It is even possible to mix String and &str
pair_transformer([PairOwned { first: "a", second: "b" }].iter());
pair_transformer([("a", "b")].iter());
}
Related
On the code below, you can see that I forced the implementation of A for everything that implements AsRef<[T]> and Index[T], so B should implement it, because it implements both of these. However this is not the case. Why?
use std::convert::{AsMut, AsRef};
use std::ops::{Index, IndexMut};
use std::slice::SliceIndex;
pub trait A<T, I: SliceIndex<[T], Output = T>>:
AsRef<[T]> + Index<I, Output = T>
{
fn len(&self) -> usize;
}
impl<
T: AsRef<[T]> + Index<I, Output = T>,
I: SliceIndex<[T], Output = T>,
> A<T, I> for T
{
fn len(&self) -> usize {
self.as_ref().len()
}
}
struct B<'a, T>{
data: &'a mut [T]
}
impl<'a, T> AsRef<[T]> for B<'a, T> {
fn as_ref(&self) -> &[T] {
self.data
}
}
impl<'a, T, I: SliceIndex<[T], Output = T>> Index<I> for B<'a, T> {
type Output = T;
fn index(
&self,
v: I,
) -> &Self::Output {
&self.as_ref()[v]
}
}
fn something<'a, T>(r: &'a mut[T]) -> Box<dyn A<T, usize>> {
let a = B{data: r};
Box::new(a)
}
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=aa2353139f3d097e2497ed700d678ed3
Error:
error[E0277]: the trait bound `B<'_, T>: A<T, usize>` is not satisfied
--> src/lib.rs:46:5
|
46 | Box::new(a)
| ^^^^^^^^^^^ the trait `A<T, usize>` is not implemented for `B<'_, T>`
|
= note: required for the cast to the object type `dyn A<T, usize, Output = T>`
You need to introduce an additional type parameter on the blanket impl for A:
impl<T, I, V> A<T, I> for V
where
V: AsRef<[T]> + Index<I, Output = T>,
I: SliceIndex<[T], Output = T>,
{
fn len(&self) -> usize {
self.as_ref().len()
}
}
After fixing that, you'll get a lifetime error since the trait object returned in the box infers a 'static lifetime, so you'll need to bind it to the input slice's 'a lifetime.
fn something<'a, T>(r: &'a mut [T]) -> Box<dyn A<T, usize> + 'a> {
let a = B { data: r };
Box::new(a)
}
I was playing with the code from this answer but the FromIterator impl does not compile any more:
error[E0276]: impl has stricter requirements than trait --> src/lib.rs:184:9
| 184 | fn from_iter<I: IntoIterator<Item = T> + 'a>(itrbl: I) -> LazyList<'a, T> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ impl has extra requirement `I: 'a`
For more information about this error, try `rustc --explain E0276`.
The slightly updated code is on the playground.
// only necessary because Box<FnOnce() -> R> doesn't work...
mod thunk {
pub trait Invoke<R = ()> {
fn invoke(self: Box<Self>) -> R;
}
impl<R, F: FnOnce() -> R> Invoke<R> for F {
#[inline(always)]
fn invoke(self: Box<F>) -> R { (*self)() }
}
}
// Lazy is lazily evaluated contained value using the above Invoke trait
// instead of the desire Box<FnOnce() -> T> or a stable FnBox (currently not)...
pub mod lazy {
use crate::thunk::Invoke;
use std::cell::UnsafeCell;
use std::mem::replace;
use std::ops::Deref;
// Lazy is lazily evaluated contained value using the above Invoke trait
// instead of the desire Box<FnOnce() -> T> or a stable FnBox (currently not)...
pub struct Lazy<'a, T: 'a>(UnsafeCell<LazyState<'a, T>>);
enum LazyState<'a, T: 'a> {
Unevaluated(Box<dyn Invoke<T> + 'a>),
EvaluationInProgress,
Evaluated(T),
}
use self::LazyState::*;
impl<'a, T: 'a> Lazy<'a, T> {
#[inline]
pub fn new<F: 'a + FnOnce() -> T>(func: F) -> Lazy<'a, T> {
Lazy(UnsafeCell::new(Unevaluated(Box::new(func))))
}
#[inline]
pub fn evaluated(val: T) -> Lazy<'a, T> {
Lazy(UnsafeCell::new(Evaluated(val)))
}
#[inline(always)]
fn force(&self) {
unsafe {
match *self.0.get() {
Evaluated(_) => {}, // nothing required; already Evaluated
EvaluationInProgress => panic!("Lazy::force called recursively!!!"),
_ => {
let ue = replace(&mut *self.0.get(), EvaluationInProgress);
if let Unevaluated(thnk) = ue {
*self.0.get() = Evaluated(thnk.invoke());
} // no other possiblity!
}
}
}
}
#[inline]
pub fn unwrap<'b>(self) -> T where T: 'b { // consumes the object to produce the value
self.force(); // evaluatate if not evealutated
match { self.0.into_inner() } {
Evaluated(v) => v,
_ => unreachable!() // previous code guarantees never not Evaluated
}
}
}
impl<'a, T: 'a> Deref for Lazy<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
self.force(); // evaluatate if not evalutated
match *unsafe { &*self.0.get() } {
Evaluated(ref v) => v,
_ => unreachable!(),
}
}
}
}
// LazyList is an immutable lazily-evaluated persistent (memoized) singly-linked list
// similar to lists in Haskell, although here only tails are lazy...
// depends on the contained type being Clone so that the LazyList can be
// extracted from the reference-counted Rc heap objects in which embedded.
pub mod lazylist {
use crate::lazy::Lazy;
use std::rc::Rc;
use std::iter::FromIterator;
use std::mem::{replace, swap};
#[derive(Clone)]
pub enum LazyList<'a, T: 'a + Clone> {
Empty,
Cons(T, RcLazyListNode<'a, T>),
}
pub use self::LazyList::Empty;
use self::LazyList::Cons;
type RcLazyListNode<'a, T> = Rc<Lazy<'a, LazyList<'a, T>>>;
// impl<'a, T:'a> !Sync for LazyList<'a, T> {}
impl<'a, T: 'a + Clone> LazyList<'a, T> {
#[inline]
pub fn singleton(v: T) -> LazyList<'a, T> {
Cons(v, Rc::new(Lazy::evaluated(Empty)))
}
#[inline]
pub fn cons<F>(v: T, cntf: F) -> LazyList<'a, T>
where F: 'a + FnOnce() -> LazyList<'a, T>
{
Cons(v, Rc::new(Lazy::new(cntf)))
}
#[inline]
pub fn head(&self) -> &T {
if let Cons(ref hd, _) = *self {
return hd;
}
panic!("LazyList::head called on an Empty LazyList!!!")
}
#[inline]
pub fn tail<'b>(&'b self) -> &'b Lazy<'a, LazyList<'a, T>> {
if let Cons(_, ref rlln) = *self {
return &*rlln;
}
panic!("LazyList::tail called on an Empty LazyList!!!")
}
#[inline]
pub fn unwrap(self) -> (T, RcLazyListNode<'a, T>) {
// consumes the object
if let Cons(hd, rlln) = self {
return (hd, rlln);
}
panic!("LazyList::unwrap called on an Empty LazyList!!!")
}
#[inline]
fn iter(&self) -> Iter<'a, T> {
Iter(self)
}
}
impl<'a, T: 'a + Clone> Iterator for LazyList<'a, T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match replace(self, Empty) {
Cons(hd, rlln) => {
let mut newll = (*rlln).clone();
swap(self, &mut newll); // self now contains tail, newll contains the Empty
Some(hd)
}
_ => None,
}
}
}
pub struct Iter<'a, T: 'a + Clone>(*const LazyList<'a, T>);
impl<'a, T: 'a + Clone> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
unsafe {
if let LazyList::Cons(ref v, ref r) = *self.0 {
self.0 = &***r;
Some(v)
} else {
None
}
}
}
}
impl<'i, 'l, T: 'i + Clone> IntoIterator for &'l LazyList<'i, T> {
type Item = &'i T;
type IntoIter = Iter<'i, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T: 'a + Clone, > FromIterator<T> for LazyList<'a, T> {
fn from_iter<I: IntoIterator<Item = T> + 'a>(itrbl: I) -> LazyList<'a, T> {
let itr = itrbl.into_iter();
#[inline(always)]
fn next_iter<'b, R, Itr>(mut iter: Itr) -> LazyList<'b, R>
where R: 'b + Clone,
Itr: 'b + Iterator<Item = R>
{
match iter.next() {
Some(val) => LazyList::cons(val, move || next_iter(iter)),
None => Empty,
}
}
next_iter(itr)
}
}
}
Unfortunately I've exhausted ideas on how to try and fix this.
The code in the question (though not in the referenced answer, which has since been updated) relies on a soundness bug in older versions of the compiler (#18937) which has since been fixed.
It is not possible to implement FromIterator for LazyList, or indeed for any data structure, by storing the iterator inside the structure. This is because the FromIterator trait allows the implementor (Self) to outlive the iterator type (I::IntoIter). That the compiler ever accepted it was an oversight.
When copying code from the internet, be conscious of the age of the source. This code is also out of date in several other respects, notably:
it uses Rust 2015-style paths
it omits dyn on trait object types
the Invoke workaround is no longer needed, since dyn FnOnce() -> T works properly now.
I'm trying to wrap a HashMap, as defined below, to return a mutable reference from a HashMap:
use std::{collections::HashMap, marker::PhantomData};
struct Id<T>(usize, PhantomData<T>);
pub struct IdCollection<T>(HashMap<Id<T>, T>);
impl<'a, T> std::ops::Index<Id<T>> for &'a mut IdCollection<T> {
type Output = &'a mut T;
fn index(&mut self, id: &'a Id<T>) -> Self::Output {
self.0.get_mut(id).unwrap()
}
}
And the resulting error:
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the method body at 54:5...
--> src/id_container.rs:54:5
|
54 | / fn index(&mut self, id: &'a Id<T>) -> Self::Output {
55 | | self.0.get_mut(id).unwrap()
56 | | }
| |_____^
note: ...so that reference does not outlive borrowed content
--> src/id_container.rs:55:9
|
55 | self.0.get_mut(id).unwrap()
| ^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as defined on the impl at 52:6...
--> src/id_container.rs:52:6
|
52 | impl<'a, T> std::ops::Index<Id<T>> for &'a mut IdCollection<T> {
| ^^
= note: ...so that the types are compatible:
expected std::ops::Index<id_container::Id<T>>
found std::ops::Index<id_container::Id<T>>
Why can't the compiler extend the lifetime of the get_mut? The IdCollection would then be borrowed mutably.
Note that I tried using a std::collections::HashSet<IdWrapper<T>> instead of a HashMap:
struct IdWrapper<T> {
id: Id<T>,
t: T,
}
Implementing the proper borrow etc. so I can use the Id<T> as a key.
However, HashSet doesn't offer a mutable getter (which makes sense since you don't want to mutate what's used for your hash). However in my case only part of the object should be immutable. Casting a const type to a non-const is UB so this is out of the question.
Can I achieve what I want? Do I have to use some wrapper such as a Box? Although I'd rather avoid any indirection...
EDIT
Ok I'm an idiot. First I missed the IndexMut instead of the Index, and I forgot the & when specifying the Self::Output in the signature.
Here's my full code below:
pub struct Id<T>(usize, PhantomData<T>);
impl<T> std::fmt::Display for Id<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Hash for Id<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<T> PartialEq for Id<T> {
fn eq(&self, o: &Self) -> bool {
self.0 == o.0
}
}
impl<T> Eq for Id<T> {}
pub struct IdCollection<T>(HashMap<Id<T>, T>);
impl<'a, T> IntoIterator for &'a IdCollection<T> {
type Item = (&'a Id<T>, &'a T);
type IntoIter = std::collections::hash_map::Iter<'a, Id<T>, T>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter()
}
}
impl<'a, T> IntoIterator for &'a mut IdCollection<T> {
type Item = (&'a Id<T>, &'a mut T);
type IntoIter = std::collections::hash_map::IterMut<'a, Id<T>, T>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter_mut()
}
}
impl<T> std::ops::Index<Id<T>> for IdCollection<T> {
type Output = T;
fn index(&self, id: Id<T>) -> &Self::Output {
self.0.get(&id).unwrap()
}
}
impl<T> std::ops::IndexMut<Id<T>> for IdCollection<T> {
fn index_mut(&mut self, id: Id<T>) -> &mut Self::Output {
self.0.get_mut(&id).unwrap()
}
}
impl<T> std::ops::Index<&Id<T>> for IdCollection<T> {
type Output = T;
fn index(&self, id: &Id<T>) -> &Self::Output {
self.0.get(id).unwrap()
}
}
impl<T> std::ops::IndexMut<&Id<T>> for IdCollection<T> {
fn index_mut(&mut self, id: &Id<T>) -> &mut Self::Output {
self.0.get_mut(id).unwrap()
}
}
If I understand correctly what you try to achieve, then I have to tell you, that it is a bit more complex than you originally thought it would be.
First of all, you have to realise, that if you like to use a HashMap then the type of the key required to be hashable and comparable. Therefore the generic type parameter T in Id<T> has to be bound to those traits in order to make Id hashable and comparable.
The second thing you need to understand is that there are two different traits to deal with the indexing operator: Index for immutable data access, and IndexMut for mutable one.
use std::{
marker::PhantomData,
collections::HashMap,
cmp::{
Eq,
PartialEq,
},
ops::{
Index,
IndexMut,
},
hash::Hash,
};
#[derive(PartialEq, Hash)]
struct Id<T>(usize, PhantomData<T>)
where T: PartialEq + Hash;
impl<T> Eq for Id<T>
where T: PartialEq + Hash
{}
struct IdCollection<T>(HashMap<Id<T>, T>)
where T: PartialEq + Hash;
impl<T> Index<Id<T>> for IdCollection<T>
where T: PartialEq + Hash
{
type Output = T;
fn index(&self, id: Id<T>) -> &Self::Output
{
self.0.get(&id).unwrap()
}
}
impl<T> IndexMut<Id<T>> for IdCollection<T>
where T: PartialEq + Hash
{
fn index_mut(&mut self, id: Id<T>) -> &mut Self::Output
{
self.0.get_mut(&id).unwrap()
}
}
fn main()
{
let mut i = IdCollection(HashMap::new());
i.0.insert(Id(12, PhantomData), 99i32);
println!("{:?}", i[Id(12, PhantomData)]);
i[Id(12, PhantomData)] = 54i32;
println!("{:?}", i[Id(12, PhantomData)]);
}
It may seem a bit surprising, but IndexMut is not designed to insert an element into the collection but to actually modify an existing one. That's the main reason why HashMap does not implement IndexMut -- and that's also the reason why the above example uses the HashMap::insert method to initially place the data. As you can see, later on, when the value is already available we can modify it via the IdCollection::index_mut.
I have a binary trait Resolve.
pub trait Resolve<RHS = Self> {
type Output;
fn resolve(self, rhs: RHS) -> Self::Output;
}
I implemented the trait for something trivial where both arguments are taken by reference (self is &'a Foo and rhs is &'b Foo):
struct Foo;
impl <'a, 'b> Resolve<&'b Foo> for &'a Foo {
type Output = Foo;
fn resolve(self, rhs: &'b Foo) -> Self::Output {
unimplemented!()
}
}
If I now write
fn main() {
let a: &Foo = &Foo;
let b = Foo;
a.resolve(&b);
}
it will compile just fine, but if I try to implement it on my struct Signal, it will not work.
pub struct Signal<'a, T> {
ps: Vec<&'a T>,
}
impl<'a, T: Resolve<&'a T, Output = T> + 'a> Signal<'a, T> {
pub fn foo(&mut self) {
let a: &T = &self.ps[0];
let b = &self.ps[1];
a.resolve(b);
}
}
error[E0507]: cannot move out of borrowed content
--> src/main.rs:25:9
|
25 | a.resolve(b);
| ^ cannot move out of borrowed content
How do I get this example working? (playground)
The trait bound on foo only says that T implements Resolve, but you try to call .resolve() on a value of type &T.
To say, instead, that references to T must implement Resolve, you need a higher-ranked trait bound:
impl<'a, T> Signal<'a, T>
where
for<'b> &'b T: Resolve<&'a T, Output = T>,
{
pub fn foo(&mut self) { ... }
}
After thinking about this I came up with a simpler solution that does not rely on HRTB.
impl<'a, T> Signal<'a, T>
where
&'a T: Resolve<&'a T, Output = T> + 'a,
{
pub fn foo(&mut self) {
let a: &T = &self.ps[0];
let b = &self.ps[1];
a.resolve(b);
}
}
This does the same, namely describe, that &T implements Resolve, but without the need of HRTB.
You have to use the where clause for this, but apart from that this is a nice and easy solution.
I have this code:
use std::fmt::Debug;
struct S<A>
where
for<'a> A: Debug + 'a,
{
f: Box<Fn(A) -> i32>,
}
impl<A> S<A>
where
for<'a> A: Debug + 'a,
{
fn call(&self, a: A) {
println!("Return {:?}", (self.f)(a));
}
}
fn create<A>(f: Box<Fn(A) -> i32>) -> S<A>
where
for<'a> A: Debug + 'a,
{
S::<A> { f }
}
fn helper() {
let x = create::<&i32>(Box::new(|x: &i32| *x * 2));
let arg = 333;
x.call(&arg);
}
fn main() {
let x = helper();
}
It's failed to compile:
error[E0310]: the parameter type `A` may not live long enough
In code 2, I changed Fn(A) -> i32 to Fn(&A) -> i32, the code works.
...
f: Box<Fn(&A) -> i32>,
...
Since A is argument of Fn trait, it's a type that has Higher-Rank lifetime. It shouldn't be affected by the lifetime of struct S<A> .
But why can't code 1 be compiled?
How can I workaround it for borrow or non-borrow type A?
There is no easy way to make helper work in current Rust, even if you remove all the for<'a> A: Debug + 'a, bounds (which only further restricts what types A can be, whereas you want to allow more).
This is as simple as I can make your example:
struct S<A> {
f: Box<Fn(A) -> i32>,
}
impl<A> S<A> {
fn call(&self, a: A) {
println!("Return {:?}", (self.f)(a));
}
}
fn create<A>(f: Box<Fn(A) -> i32>) -> S<A> {
S { f }
}
fn helper() {
let x = create(Box::new(|x: &i32| *x * 2));
let arg = 333;
x.call(&arg);
}
fn main() {
helper();
}
The reason it doesn't work is that A "comes from the outside", and Rust can't infer that you want for<'a> S<&'a A>, it can't even talk about such a type.
Note that if let arg = 333; is placed above let x, this example does compile (because it infers a reference to arg specifically, not a for<'a>).
The closest you can get today is with an associated type on a trait with a lifetime parameter, e.g.:
// Emulating `type Type<'a>` by moving `'a` to the trait.
trait Apply<'a> {
type Type;
}
struct Plain<T>(std::marker::PhantomData<T>);
impl<'a, T> Apply<'a> for Plain<T> {
type Type = T;
}
struct Ref<T: ?Sized>(std::marker::PhantomData<T>);
impl<'a, T: ?Sized + 'a> Apply<'a> for Ref<T> {
type Type = &'a T;
}
struct S<A: for<'a> Apply<'a>> {
f: Box<for<'a> Fn(<A as Apply<'a>>::Type) -> i32>,
}
impl<A: for<'a> Apply<'a>> S<A> {
fn call<'a>(&self, a: <A as Apply<'a>>::Type) {
println!("Return {:?}", (self.f)(a));
}
}
fn create<A: for<'a> Apply<'a>>(
f: Box<for<'a> Fn(<A as Apply<'a>>::Type) -> i32>,
) -> S<A> {
S { f }
}
fn helper() {
let x = create::<Ref<i32>>(Box::new(|x: &i32| *x * 2));
let arg = 333;
x.call(&arg);
}
fn main() {
helper();
}
However, it turns out that this encoding hits https://github.com/rust-lang/rust/issues/52812, so it's not actually usable at the moment (and I'm not aware of an workaround).