Why is Identity monad useful? - haskell

I often read that
It seem that identity monad is useless. It's not... but that's another
topic.
So can anyone tell my how is it useful?

Identity is to monads, functors and applicative functors as 0 is to numbers. On its own it seems useless, but it's often needed in places where one expects a monad or an (applicative) functor that actually doesn't do anything.
As already mentioned, Identity allows us to define just monad transformers and then define their corresponding monads just as SomeT Identity.
But that's not all. It's often convenient to also define other concepts in terms of monads, which usually adds a lot of flexibility. For example Conduit i m o (also see this tutorial) defines an element in a pipeline that can request data of type i, can produce data of type o, and uses monad m for internal processing. Then such a pipeline can be run in the given monad using
($$) :: Monad m => Source m a -> Sink a m b -> m b
(where Source is an alias for Conduit with no input and Sink for Conduit with no output). And when no effectful computations are needed in the pipeline, just pure code, we just specialize m to Identity and run such a pipeline as
runIdentity (source $$ sink)
Identity is also the "empty" functor and applicative functor: Identity composed with another functor or applicative functor is isomorphic to the original. For example, Lens' is defined as a function polymorphic in a Functor:
Functor f => (a -> f a) -> s -> f s
roughly speaking, such a lens allows to read or manipulate something of type a inside s, for example a field inside a record (for an introduction to lenses see this post). If we specialize f to Identity, we get
(a -> Identity a) -> s -> Identity s
which is isomorphic to
(a -> a) -> s -> s
so given an updating function on a, return an updating function on s. (For completeness: If we specialize f to Const a, we get (a -> Const b a) -> s -> Const b s, which is isomorphic to (a -> b) -> (s -> b), that is, given a reader on a, return a reader on s.)

Sometimes I work with records whose fields are optional in some contexts (like when parsing the record from JSON) but mandatory in others.
I solve that by parametrizing the record with a functor, and using Maybe or Identity in each case.
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE StandaloneDeriving #-}
data Query f = Query
{
_viewName :: String
, _target :: f Server -- Server is some type, it doesn't matter which
}
deriving (Generic)
The server field is optional when parsing JSON:
instance FromJSON (Query Maybe)
But then I have a function like
withDefaultServer :: Server -> Query Maybe -> Query Identity
withDefaultServer = undefined
that returns a record in which the _target field is mandatory.
(This answer doesn't use anything monadic about Identity, though.)

One use of it is as a base monad for monad transformer stacks: instead of having to provide two types Some :: * ->* and SomeT :: (* -> *) -> * -> *, it is enough to provide just a latter by setting type Some = SomeT Identity.
Another, somewhat similar use case (but completely detached from the whole monad business) is when you need to refer to tuples: we can say () is a nullary tuple, (a, b) is a binary tuple, (a, b, c) is a ternary tuple, and so on, but what does that leave for the unary case? Saying a is a unary tuple for any choice of a is often not satisfactory, for example when we are building some typeclass instances like Data.Tuple.Select, some type constructor is needed to act as the unambiguous key. So by adding e.g. Sel1 instances to Identity a, it forces us to distinguish between (a, b) (a two-tuple containing an a and a b), and Identity (a, b) (a one-tuple containing a single (a, b) value).
(Note that Data.Tuple.Select defines its own type called OneTuple instead of reusing Identity, but it is isomorphic to Identity—in fact, it's just a rename away—and I think it only exists to avoid a non-base dependency.)

One real use-case is to be a (pure) base of monad transformers stack, e.g.
type Reader r = ReaderT r Identity

Related

Adding a Constraint to a Monad Result Type

I would like to create a type that is an instance of Monad such that the result type can only be an instance of a specific typeclass. I would like to be able to write something like
data T a = T a
class C a where
...
instance Monad T where
return :: (C a) => a -> m a
return x = ...
(>>=) :: (C a, C b) => m a -> (a -> m b) -> m b
p >>= f = ...
In the actual code that I'm working on, I need a typeclass constraint on the result type so that a specific function from the typeclass is available in the definitions for return and (>>=).
Is there any way to do this?
As per #chi's comment, the best solution is probably to use either constrained monads or indexed monads. Both solutions have the caveat of having to work around the standard library, but it can be done with workarounds such as rebinding syntax using the RebindableSyntax extension for example. The best example of constrained monads I was able to find was the constrained-monads package available on Hackage, while the best example I was able to find of indexed monads was a post at Kwang's Haskell Blog.

How could we know that an applicative can't be a Monad?

From the example of Validation (https://hackage.haskell.org/package/Validation), I'm trying to get an intuition of detecting how/why an applicative could not be a Monad (Why can AccValidation not have a Monad instance?)
Could you challenge my reasoning ?
I think about a monad in the way we handle behind the join (m ( m b) -> m b), let's develop my understanding with an example like Validation:
in data Validation err a, the functor structure is (Validation err). When you look at the definition of the bind for Monad and specializing the types for Validation you get the following :
(>>=) :: m a -> (a -> m b) -> m b
(>>=) :: (Validation err) a -> ( a -> (Validation err) b) -> (Validation err) b
if you beta reduce (>>=) you'll get :
m a -> (a -> m b) -> m b // if we apply (m a) in the monadic function
m ( m b) -> m b
then to get the result of (>>=) which is m b, you'll use join :
join :: (Monad m) => m (m a) -> m a
join x = x >>= id
If you play with the types you'll get :
join m ( m b ) = m ( m b) >>= (\(m b) -> m b -> m b) which gives m b
So that join just drop the outermost structure, only the value in the innermost type (the value of the innermost functor) is kept/transmitted through the sequence.
In a monad we can't pass some information from the functor structure (e.g Validation err) to the next 'action', the only think we can pass is the value. The only think you could do with that structure is short-circuiting the sequence to get information from it.
You can't perform a sequence of action on the information from the functor structure (e.g accumulating something like error..)
So I would say that an applicative that is squashing its structure with some logic on its structure could be suspicious as not being able to become a Monad ?
This isn't really an answer, but it's too long for a comment.
This and other referenced discussions in that thread are relevant. I think the question is posed sort of backwards: all Monads naturally give rise to an Applicative (where pure = return, etc); the issue is that most users expect/assume that (where a type is instance Monad) the Applicative instance is semantically equivalent to the instance to which the Monad gives rise.
This is documented in the Applicative class as a sort of law, but I'm not totally convinced it's justified. The argument seems to be that having an Applicative and Monad that don't agree in this way is confusing.
My experience using Validation is that it's a nightmare to do anything large with it, both because the notation becomes a mess and because you find you have some data dependencies (e.g. you need to parse and validate one section based on the parse of a previous section). You end up defining bindV which behave like an Error monad >>= since a proper Monad instance is considered dubious.
And yet using a Monad/Applicative pair like this does what you want: especially when using ApplicativeDo (I imagine; haven't tried this), the effect of writing your parser (e.g.) in Monadic style is that you can accumulate as many errors as possible at every level, based on the data dependencies of your parsing code. Haxl arguably fudges this "law" in a similar way.
I don't have enough experience with other types that are Applicative but not Monad to know whether there's a sensible rule for when it's "okay" for the Applicative to disagree in this way. Maybe it's totally arbitrary that Validation seems to work sensibly.
In any case...
I'm not sure how to directly answer your question. I think you start by taking the laws documented at the bottom of Applicative class docs, and flip them, so you get:
return = pure
ap m1 m2 = m1 <*> m2
If ap were a method of Monad and the above was a minimal complete definition then you'd simply have to test whether the above passed the Monad laws to answer your question for any Applicative, but that's not the case of course.

Any advantage of using type constructors in type classes?

Take for example the class Functor:
class Functor a
instance Functor Maybe
Here Maybe is a type constructor.
But we can do this in two other ways:
Firstly, using multi-parameter type classes:
class MultiFunctor a e
instance MultiFunctor (Maybe a) a
Secondly using type families:
class MonoFunctor a
instance MonoFunctor (Maybe a)
type family Element
type instance Element (Maybe a) a
Now there's one obvious advantage of the two latter methods, namely that it allows us to do things like this:
instance Text Char
Or:
instance Text
type instance Element Text Char
So we can work with monomorphic containers.
The second advantage is that we can make instances of types that don't have the type parameter as the final parameter. Lets say we make an Either style type but put the types the wrong way around:
data Silly t errorT = Silly t errorT
instance Functor Silly -- oh no we can't do this without a newtype wrapper
Whereas
instance MultiFunctor (Silly t errorT) t
works fine and
instance MonoFunctor (Silly t errorT)
type instance Element (Silly t errorT) t
is also good.
Given these flexibility advantages of only using complete types (not type signatures) in type class definitions, is there any reason to use the original style definition, assuming you're using GHC and don't mind using the extensions? That is, is there anything special you can do putting a type constructor, not just a full type in a type class that you can't do with multi-parameter type classes or type families?
Your proposals ignore some rather important details about the existing Functor definition because you didn't work through the details of writing out what would happen with the class's member function.
class MultiFunctor a e where
mfmap :: (e -> ??) -> a -> ????
instance MultiFunctor (Maybe a) a where
mfmap = ???????
An important property of fmap at the moment is that its first argument can change types. fmap show :: (Functor f, Show a) => f a -> f String. You can't just throw that away, or you lose most of the value of fmap. So really, MultiFunctor would need to look more like...
class MultiFunctor s t a b | s -> a, t -> b, s b -> t, t a -> s where
mfmap :: (a -> b) -> s -> t
instance (a ~ c, b ~ d) => MultiFunctor (Maybe a) (Maybe b) c d where
mfmap _ Nothing = Nothing
mfmap f (Just a) = Just (f a)
Note just how incredibly complicated this has become to try to make inference at least close to possible. All the functional dependencies are in place to allow instance selection without annotating types all over the place. (I may have missed a couple possible functional dependencies in there!) The instance itself grew some crazy type equality constraints to allow instance selection to be more reliable. And the worst part is - this still has worse properties for reasoning than fmap does.
Supposing my previous instance didn't exist, I could write an instance like this:
instance MultiFunctor (Maybe Int) (Maybe Int) Int Int where
mfmap _ Nothing = Nothing
mfmap f (Just a) = Just (if f a == a then a else f a * 2)
This is broken, of course - but it's broken in a new way that wasn't even possible before. A really important part of the definition of Functor is that the types a and b in fmap don't appear anywhere in the instance definition. Just looking at the class is enough to tell the programmer that the behavior of fmap cannot depend on the types a and b. You get that guarantee for free. You don't need to trust that instances were written correctly.
Because fmap gives you that guarantee for free, you don't even need to check both Functor laws when defining an instance. It's sufficient to check the law fmap id x == x. The second law comes along for free when the first law is proven. But with that broken mfmap I just provided, mfmap id x == x is true, even though the second law is not.
As the implementer of mfmap, you have more work to do to prove your implementation is correct. As a user of it, you have to put more trust in the implementation's correctness, since the type system can't guarantee as much.
If you work out more complete examples for the other systems, you find that they have just as many issues if you want to support the full functionality of fmap. And this is why they aren't really used. They add a lot of complexity for only a small gain in utility.
Well, for one thing the traditional functor class is just much simpler. That alone is a valid reason to prefer it, even though this is Haskell and not Python. And it also represents the mathematical idea better of what a functor is supposed to be: a mapping from objects to objects (f :: *->*), with extra property (->Constraint) that each (forall (a::*) (b::*)) morphism (a->b) is lifted to a morphism on the corresponding object mapped to (-> f a->f b). None of that can be seen very clearly in the * -> * -> Constraint version of the class, or its TypeFamilies equivalent.
On a more practical account, yes, there are also things you can only do with the (*->*)->Constraint version.
In particular, what this constraint guarantees you right away is that all Haskell types are valid objects you can put into the functor, whereas for MultiFunctor you need to check every possible contained type, one by one. Sometimes that's just not possible (or is it?), like when you're mapping over infinitely many types:
data Tough f a = Doable (f a)
| Tough (f (Tough f (a, a)))
instance (Applicative f) = Semigroup (Tough f a) where
Doable x <> Doable y = Tough . Doable $ (,)<$>x<*>y
Tough xs <> Tough ys = Tough $ xs <> ys
-- The following actually violates the semigroup associativity law. Hardly matters here I suppose...
xs <> Doable y = xs <> Tough (Doable $ fmap twice y)
Doable x <> ys = Tough (Doable $ fmap twice x) <> ys
twice x = (x,x)
Note that this uses the Applicative instance of f not just on the a type, but also on arbitrary tuples thereof. I can't see how you could express that with a MultiParamTypeClasses- or TypeFamilies-based applicative class. (It might be possible if you make Tough a suitable GADT, but without that... probably not.)
BTW, this example is perhaps not as useless as it may look – it basically expresses read-only vectors of length 2n in a monadic state.
The expanded variant is indeed more flexible. It was used e.g. by Oleg Kiselyov to define restricted monads. Roughly, you can have
class MN2 m a where
ret2 :: a -> m a
class (MN2 m a, MN2 m b) => MN3 m a b where
bind2 :: m a -> (a -> m b) -> m b
allowing monad instances to be parametrized over a and b. This is useful because you can restrict those types to members of some other class:
import Data.Set as Set
instance MN2 Set.Set a where
-- does not require Ord
return = Set.singleton
instance Prelude.Ord b => MN3 SMPlus a b where
-- Set.union requires Ord
m >>= f = Set.fold (Set.union . f) Set.empty m
Note than because of that Ord constraint, we are unable to define Monad Set.Set using unrestricted monads. Indeed, the monad class requires the monad to be usable at all types.
Also see: parameterized (indexed) monad.

Why not a more general function than mappend in Haskell?

The mappend function is just a particular case of an associative operation where the two elements are of the same type. Why no packages propose an implementation of an associative function without that condition?
This would be pretty easy with the multi-parameters type classes extension:
{-# Language MultiParamTypeClasses #-}
module Append where
class Append a b where
(<->) :: a -> b -> a
Then, depending on the implementation of the instances, it would for example allow to concatenate an Int with a String:
"I am " <-> 42
> "I am 42"
or add optional parameter to data record types:
data MyType = MyType {_option :: Maybe String}
myType = MyType Nothing
myTypeWithOption = myType <-> "Hello!"
I have tried to search on Hoogle, Hayoo! and on the web but could not find such function.
So: a) does it exists? b) if not why?
There is a generalization (of sorts) of Monoid in base's Control.Category:
class Category cat where
id :: cat a a
(.) :: cat b c -> cat a b -> cat a c
It has the same laws as Monoid - in fact, the documentation explicitly says "id and (.) must form a monoid."
This isn't a true generalization, because it doesn't work with the same types. But associativity works exactly because of the restriction on the types it works with.
What you're describing is is an action of a monoid on a set. In Haskell this could be defined as
class Monoid m => MonoidAction m s where
act :: m -> s -> s
infixr 5 `act`
This is a left monoid action on s, you could also have a right action with the arguments reversed (as you have).
The action must be compatible with the monoid operations as follows:
a `act` (b `act` x) == (a <> b) `act` x
mempty `act` x == x
Another way how to view a monoid action and its laws is that Endo . act a homomorphism from monoid m to Endo s - the monoid of endomorphism on s.
Note that for every monoid you can define its action on itself by defining
instance Monoid m => MonoidAction m m where
act = mappend
See module Data.Monoid.Action.
You can't in general define associativity without the two arguments having the same type. If you try, it will not be type correct.

Monad theory and Haskell

Most tutorials seem to give a lot of examples of monads (IO, state, list and so on) and then expect the reader to be able to abstract the overall principle and then they mention category theory. I don't tend to learn very well by trying generalise from examples and I would like to understand from a theoretical point of view why this pattern is so important.
Judging from this thread:
Can anyone explain Monads?
this is a common problem, and I've tried looking at most of the tutorials suggested (except the Brian Beck videos which won't play on my linux machine):
Does anyone know of a tutorial that starts from category theory and explains IO, state, list monads in those terms? the following is my unsuccessful attempt to do so:
As I understand it a monad consists of a triple: an endo-functor and two natural transformations.
The functor is usually shown with the type:
(a -> b) -> (m a -> m b)
I included the second bracket just to emphasise the symmetry.
But, this is an endofunctor, so shouldn't the domain and codomain be the same like this?:
(a -> b) -> (a -> b)
I think the answer is that the domain and codomain both have a type of:
(a -> b) | (m a -> m b) | (m m a -> m m b) and so on ...
But I'm not really sure if that works or fits in with the definition of the functor given?
When we move on to the natural transformation it gets even worse. If I understand correctly a natural transformation is a second order functor (with certain rules) that is a functor from one functor to another one. So since we have defined the functor above the general type of the natural transformations would be:
((a -> b) -> (m a -> m b)) -> ((a -> b) -> (m a -> m b))
But the actual natural transformations we are using have type:
a -> m a
m a -> (a ->m b) -> m b
Are these subsets of the general form above? and why are they natural transformations?
Martin
A quick disclaimer: I'm a little shaky on category theory in general, while I get the impression you have at least some familiarity with it. Hopefully I won't make too much of a hash of this...
Does anyone know of a tutorial that starts from category theory and explains IO, state, list monads in those terms?
First of all, ignore IO for now, it's full of dark magic. It works as a model of imperative computations for the same reasons that State works for modelling stateful computations, but unlike the latter IO is a black box with no way to deduce the monadic structure from the outside.
The functor is usually shown with the type: (a -> b) -> (m a -> m b) I included the second bracket just to emphasise the symmetry.
But, this is an endofunctor, so shouldn't the domain and codomain be the same like this?:
I suspect you are misinterpreting how type variables in Haskell relate to the category theory concepts.
First of all, yes, that specifies an endofunctor, on the category of Haskell types. A type variable such as a is not anything in this category, however; it's a variable that is (implicitly) universally quantified over all objects in the category. Thus, the type (a -> b) -> (a -> b) describes only endofunctors that map every object to itself.
Type constructors describe an injective function on objects, where the elements of the constructor's codomain cannot be described by any means except as an application of the type constructor. Even if two type constructors produce isomorphic results, the resulting types remain distinct. Note that type constructors are not, in the general case, functors.
The type variable m in the functor signature, then, represents a one-argument type constructor. Out of context this would normally be read as universal quantification, but that's incorrect in this case since no such function can exist. Rather, the type class definition binds m and allows the definition of such functions for specific type constructors.
The resulting function, then, says that for any type constructor m which has fmap defined, for any two objects a and b and a morphism between them, we can find a morphism between the types given by applying m to a and b.
Note that while the above does, of course, define an endofunctor on Hask, it is not even remotely general enough to describe all such endofunctors.
But the actual natural transformations we are using have type:
a -> m a
m a -> (a ->m b) -> m b
Are these subsets of the general form above? and why are they natural transformations?
Well, no, they aren't. A natural transformation is roughly a function (not a functor) between functors. The two natural transformations that specify a monad M look like I -> M where I is the identity functor, and M ∘ M -> M where ∘ is functor composition. In Haskell, we have no good way of working directly with either a true identity functor or with functor composition. Instead, we discard the identity functor to get just (Functor m) => a -> m a for the first, and write out nested type constructor application as (Functor m) => m (m a) -> m a for the second.
The first of these is obviously return; the second is a function called join, which is not part of the type class. However, join can be written in terms of (>>=), and the latter is more often useful in day-to-day programming.
As far as specific monads go, if you want a more mathematical description, here's a quick sketch of an example:
For some fixed type S, consider two functors F and G where F(x) = (S, x) and G(x) = S -> x (It should hopefully be obvious that these are indeed valid functors).
These functors are also adjoints; consider natural transformations unit :: x -> G (F x) and counit :: F (G x) -> x. Expanding the definitions gives us unit :: x -> (S -> (S, x)) and counit :: (S, S -> x) -> x. The types suggest uncurried function application and tuple construction; feel free to verify that those work as expected.
An adjunction gives rise to a monad by composition of the functors, so taking G ∘ F and expanding the definition, we get G (F x) = S -> (S, x), which is the definition of the State monad. The unit for the adjunction is of course return; and you should be able to use counit to define join.
This page does exactly that. I think your main confusion is that the class doesn't really make the Type a functor, but it defines a functor from the category of Haskell types into the category of that type.
Following the notation of the link, assuming F is a Haskell Functor, it means that there is a functor from the category of Hask to the category of F.
Roughly speaking, Haskell does its category theory all in just one category, whose objects are Haskell types and whose arrows are functions between these types. It's definitely not a general-purpose language for modelling category theory.
A (mathematical) functor is an operation turning things in one category into things in another, possibly entirely different, category. An endofunctor is then a functor which happens to have the same source and target categories. In Haskell, a functor is an operation turning things in the category of Haskell types into other things also in the category of Haskell types, so it is always an endofunctor.
[If you're following the mathematical literature, technically, the operation '(a->b)->(m a -> m b)' is just the arrow part of the endofunctor m, and 'm' is the object part]
When Haskellers talk about working 'in a monad' they really mean working in the Kleisli category of the monad. The Kleisli category of a monad is a thoroughly confusing beast at first, and normally needs at least two colours of ink to give a good explanation, so take the following attempt for what it is and check out some references (unfortunately Wikipedia is useless here for all but the straight definitions).
Suppose you have a monad 'm' on the category C of Haskell types. Its Kleisli category Kl(m) has the same objects as C, namely Haskell types, but an arrow a ~(f)~> b in Kl(m) is an arrow a -(f)-> mb in C. (I've used a squiggly line in my Kleisli arrow to distinguish the two). To reiterate: the objects and arrows of the Kl(C) are also objects and arrows of C but the arrows point to different objects in Kl(C) than in C. If this doesn't strike you as odd, read it again more carefully!
Concretely, consider the Maybe monad. Its Kleisli category is just the collection of Haskell types, and its arrows a ~(f)~> b are functions a -(f)-> Maybe b. Or consider the (State s) monad whose arrows a ~(f)~> b are functions a -(f)-> (State s b) == a -(f)-> (s->(s,b)). In any case, you're always writing a squiggly arrow as a shorthand for doing something to the type of the codomain of your functions.
[Note that State is not a monad, because the kind of State is * -> * -> *, so you need to supply one of the type parameters to turn it into a mathematical monad.]
So far so good, hopefully, but suppose you want to compose arrows a ~(f)~> b and b ~(g)~> c. These are really Haskell functions a -(f)-> mb and b -(g)-> mc which you cannot compose because the types don't match. The mathematical solution is to use the 'multiplication' natural transformation u:mm->m of the monad as follows: a ~(f)~> b ~(g)~> c == a -(f)-> mb -(mg)-> mmc -(u_c)-> mc to get an arrow a->mc which is a Kleisli arrow a ~(f;g)~> c as required.
Perhaps a concrete example helps here. In the Maybe monad, you cannot compose functions f : a -> Maybe b and g : b -> Maybe c directly, but by lifting g to
Maybe_g :: Maybe b -> Maybe (Maybe c)
Maybe_g Nothing = Nothing
Maybe_g (Just a) = Just (g a)
and using the 'obvious'
u :: Maybe (Maybe c) -> Maybe c
u Nothing = Nothing
u (Just Nothing) = Nothing
u (Just (Just c)) = Just c
you can form the composition u . Maybe_g . f which is the function a -> Maybe c that you wanted.
In the (State s) monad, it's similar but messier: Given two monadic functions a ~(f)~> b and b ~(g)~> c which are really a -(f)-> (s->(s,b)) and b -(g)-> (s->(s,c)) under the hood, you compose them by lifting g into
State_s_g :: (s->(s,b)) -> (s->(s,(s->(s,c))))
State_s_g p s1 = let (s2, b) = p s1 in (s2, g b)
then you apply the 'multiplication' natural transformation u, which is
u :: (s->(s,(s->(s,c)))) -> (s->(s,c))
u p1 s1 = let (s2, p2) = p1 s1 in p2 s2
which (sort of) plugs the final state of f into the initial state of g.
In Haskell, this turns out to be a bit of an unnatural way to work so instead there's the (>>=) function which basically does the same thing as u but in a way that makes it easier to implement and use. This is important: (>>=) is not the natural transformation 'u'. You can define each in terms of the other, so they're equivalent, but they're not the same thing. The Haskell version of 'u' is written join.
The other thing missing from this definition of Kleisli categories is the identity on each object: a ~(1_a)~> a which is really a -(n_a)-> ma where n is the 'unit' natural transformation. This is written return in Haskell, and doesn't seem to cause as much confusion.
I learned category theory before I came to Haskell, and I too have had difficulty with the mismatch between what mathematicians call a monad and what they look like in Haskell. It's no easier from the other direction!
Not sure I understand what was the question but yes, you are right, monad in Haskell is defined as a triple:
m :: * -> * -- this is endofunctor from haskell types to haskell types!
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
but common definition from category theory is another triple:
m :: * -> *
return :: a -> m a
join :: m (m a) -> m a
It is slightly confusing but it's not so hard to show that these two definitions are equal.
To do that we need to define join in terms of (>>=) (and vice versa).
First step:
join :: m (m a) -> m a
join x = ?
This gives us x :: m (m a).
All we can do with something that have type m _ is to aply (>>=) to it:
(x >>=) :: (m a -> m b) -> m b
Now we need something as a second argument for (>>=), and also,
from the type of join we have constraint (x >>= y) :: ma.
So y here will have type y :: ma -> ma and id :: a -> a fits it very well:
join x = x >>= id
The other way
(>>=) :: ma -> (a -> mb) -> m b
(>>=) x y = ?
Where x :: m a and y :: a -> m b.
To get m b from x and y we need something of type a.
Unfortunately, we can't extract a from m a. But we can substitute it for something else (remember, monad is a functor also):
fmap :: (a -> b) -> m a -> m b
fmap y x :: m (m b)
And it's perfectly fits as argument for join: (>>=) x y = join (fmap y x).
The best way to look at monads and computational effects is to start with where Haskell got the notion of monads for computational effects from, and then look at Haskell after you understand that. See this paper in particular: Notions of Computation and Monads, by E. Moggi.
See also Moggi's earlier paper which shows how monads work for the lambda calculus alone: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2787
The fact that monads capture substitution, among other things (http://blog.sigfpe.com/2009/12/where-do-monads-come-from.html), and substitution is key to the lambda calculus, should give a good clue as to why they have so much expressive power.
While monads originally came from category theory, this doesn't mean that category theory is the only abstract context in which you can view them. A different viewpoint is given by operational semantics. For an introduction, have a look at my Operational Monad Tutorial.
One way to look at IO is to consider it as a strange kind of state monad. Remember that the state monad looks like:
data State s a = State (s -> (s, a))
where the "s" argument is the data type you want to thread through the computation. Also, this version of "State" doesn't have "get" and "put" actions and we don't export the constructor.
Now imagine a type
data RealWorld = RealWorld ......
This has no real definition, but notionally a value of type RealWorld holds the state of the entire universe outside the computer. Of course we can never have a value of type RealWorld, but you can imagine something like:
getChar :: RealWorld -> (RealWorld, Char)
In other words the "getChar" function takes a state of the universe before the keyboard button has been pressed, and returns the key pressed plus the state of the universe after the key has been pressed. Of course the problem is that the previous state of the world is still available to be referenced, which can't happen in reality.
But now we write this:
type IO = State RealWorld
getChar :: IO Char
Notionally, all we have done is wrap the previous version of "getChar" as a state action. But by doing this we can no longer access the "RealWorld" values because they are wrapped up inside the State monad.
So when a Haskell program wants to change a lightbulb it takes hold of the bulb and applies a "rotate" function to the RealWorld value inside IO.
For me, so far, the explanation that comes closest to tie together monads in category theory and monads in Haskell is that monads are a monid whose objects have the type a->m b. I can see that these objects are very close to an endofunctor and so the composition of such functions are related to an imperative sequence of program statements. Also functions which return IO functions are valid in pure functional code until the inner function is called from outside.
This id element is 'a -> m a' which fits in very well but the multiplication element is function composition which should be:
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
This is not quite function composition, but close enough (I think to get true function composition we need a complementary function which turns m b back into a, then we get function composition if we apply these in pairs?), I'm not quite sure how to get from that to this:
(>>=) :: Monad m => m a -> (a -> m b) -> m b
I've got a feeling I may have seen an explanation of this in all the stuff that I read, without understanding its significance the first time through, so I will do some re-reading to try to (re)find an explanation of this.
The other thing I would like to do is link together all the different category theory explanations: endofunctor+2 natural transformations, Kleisli category, a monoid whose objects are monoids and so on. For me the thing that seems to link all these explanations is that they are two level. That is, normally we treat category objects as black-boxes where we imply their properties from their outside interactions, but here there seems to be a need to go one level inside the objects to see what’s going on? We can explain monads without this but only if we accept apparently arbitrary constructions.
Martin
See this question: is chaining operations the only thing that the monad class solves?
In it, I explain my vision that we must differentiate between the Monad class and individual types that solve individual problems. The Monad class, by itself, only solve the important problem of "chaining operations with choice" and mades this solution available to types being instance of it (by means of "inheritance").
On the other hand, if a given type that solves a given problem faces the problem of "chaining operations with choice" then, it should be made an instance (inherit) of the Monad class.
The fact is that problems not get solved merely by being a Monad. It would be like saying that "wheels" solve many problems, but actually "wheels" only solve a problem, and things with wheels solve many different problems.

Resources