See stdin/stdout/stderr of a running process - Linux kernel - linux

Is there a way to redirect/see the stdin/stdout/stderr of a given running process(By PID) in a simple way ?
I tried the following (Assume that 'pid' contains a running user process):
int foo(const void* data, struct file* file, unsigned fd)
{
printf("Fd = %x\n", fd);
return 0;
}
struct task_struct* task = pid_task(find_vpid(pid), PIDTYPE_PID);
struct files_struct* fs = task->files;
iterate_fd(fs, 0, foo, NULL);
I get 3 calls to foo (This process probably has 3 opened files, makes sense) but I can't really read from them (from the file pointers).
It prints:
0
1
2
Is it possible to achieve what I asked for in a fairly simple way ?
thanks

First, if you can change your architecure, you run it under something like screen, tmux, nohup, or dtach which will make your life easier.
But if you have a running program, you can use strace to monitor it's kernel calls, including all reads/writes. You will need to limit what it sees (try -e), and maybe filter the output for just the first 3 FDs. Also add -s because the default is to limit the size of data recorded. Something like: strace -p <PID> -e read,write -s 1000000

You can achieve it via gdb
Check the file handles process() has open :
$ ls -l /proc/6760/fd
total 3
lrwx—— 1 rjc rjc 64 Feb 27 15:32 0 -> /dev/pts/5
l-wx—— 1 rjc rjc 64 Feb 27 15:32 1 -> /tmp/foo1
lrwx—— 1 rjc rjc 64 Feb 27 15:32 2 -> /dev/pts/5
Now run GDB:
$ gdb -p 6760 /bin/cat
GNU gdb (Ubuntu 7.7.1-0ubuntu5~14.04.2) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
[lots more license stuff snipped]
Attaching to program: /bin/cat, process 6760
[snip other stuff that’s not interesting now]
(gdb) p close(1)
$1 = 0
Provide a new file name to get output - process_log
(gdb) p creat(“/tmp/process_log″, 0600)
$2 = 1
(gdb) q
The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: /bin/cat, process 6760
After that verify the result as:
ls -l /proc/6760/fd/
total 3
lrwx—— 1 rjc rjc 64 2008-02-27 15:32 0 -> /dev/pts/5
l-wx—— 1 rjc rjc 64 2008-02-27 15:32 1 -> /tmp/process_log <====
lrwx—— 1 rjc rjc 64 2008-02-27 15:32 2 -> /dev/pts/5
In the similar way, you can redirect stdin, stderr too.

Related

Bash script not producing desired result

I am running a cron-ed bash script to extract cache hits and bytes served per IP address. The script (ProxyUsage.bash) has two parts:
(uniqueIP.awk) find unique IPs and create a bash script do add up the hits and bytes
run the hits and bytes per IP
ProxyUsage.bash
#!/usr/bin/env bash
sudo gawk -f /home/maxg/scripts/uniqueIP.awk /var/log/squid3/access.log.1 > /home/maxg/scripts/pxyUsage.bash
source /home/maxg/scripts/pxyUsage.bash
uniqueIP.awk
{
arrIPs[$3]++;
}
END {
for (n in arrIPs) {
m++; # count arrIPs elements
#print "Array elements: " m;
arrAddr[i++] = n; # fill arrAddr with IPs
#print i " " n;
}
asort(arrAddr); # sort the array values
for (i = 1; i <= m; i++) { # write one command line per IP address
#printf("#!/usr/bin/env bash\n");
printf("sudo gawk -f /home/maxg/scripts/proxyUsage.awk -v v_Var=%s /var/log/squid3/access.log.1 >> /home/maxg/scripts/pxyUsage.txt\n", arrAddr[i])
}
}
pxyUsage.bash
sudo gawk -f /home/maxg/scripts/proxyUsage.awk -v v_Var=192.168.1.13 /var/log/squid3/access.log.1 >> /home/maxg/scripts/pxyUsage.txt
sudo gawk -f /home/maxg/scripts/proxyUsage.awk -v v_Var=192.168.1.14 /var/log/squid3/access.log.1 >> /home/maxg/scripts/pxyUsage.txt
sudo gawk -f /home/maxg/scripts/proxyUsage.awk -v v_Var=192.168.1.22 /var/log/squid3/access.log.1 >> /home/maxg/scripts/pxyUsage.txt
TheProxyUsage.bash script runs as scheduled and creates the pxyUsage.bash script.
However the pxyUsage.text file is not amended with the latest values when the script runs.
So far I run pxyUsage.bash every day myself, as I cannot figure out, why the result is not written to file.
Both bash scripts are set to execute. Actually the file permissions are below:
-rwxr-xr-x 1 maxg maxg 169 Mar 14 08:40 ProxySummary.bash
-rw-r--r-- 1 maxg maxg 910 Mar 15 17:15 proxyUsage.awk
-rwxrwxrwx 1 maxg maxg 399 Mar 17 06:10 pxyUsage.bash
-rw-rw-rw- 1 maxg maxg 2922 Mar 17 07:32 pxyUsage.txt
-rw-r--r-- 1 maxg maxg 781 Mar 16 07:35 uniqueIP.awk
Any hints appreciated. Thanks.
The sudo(8) command requires a pseudo-tty and you do not have one allocated under cron(8); you do have one allocated when logged in the usual way.
Instead of mucking about with sudo(8), just run the script as the correct user.
If you cannot do that, then in the root crontab, do something like this:
su - username /path/to/mycommand arg1 arg2...
This will work because root can use su(1) without neding a password.

How to finding all runnable processes

I'm learning about the scheduler and trying to print all runnable proceeses. So I have written a kernel module that uses the for_each_process macro to iterate over all processes, and prints the ones at "runnable" state. But this seems like a stupid (and inefficient) way of doing this. So I thought about getting a reference to all running queues and use their Red-Black-Tree to go over the runnable processes, but couldn't find a way to do this.
I have found out that there is a list of sched_classs for each CPU which are stop_sched_class->rt_sched_class->fair_sched_class->idle_sched_class and each one of them has it's own running queue. But couldn't find a way to reach them all.
I have used the module that uses the tasks_timeline to find all runnable processes, to print the address of the running queues - seems I have 3 running queues (while having only two processors).
The module:
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/sched.h>
MODULE_LICENSE("GPL");
struct cfs_rq {
struct load_weight load;
unsigned int nr_running, h_nr_running;
};
void printList(void){
int count;
struct task_struct * tsk;
count = 0;
for_each_process(tsk){
if(tsk->state)
continue;
printk("pid: %d rq: %p (%d)\n", tsk->pid, tsk->se.cfs_rq, tsk->se.cfs_rq->nr_running);
count++;
}
printk("count is: %d\n", count);
}
int init_module(void)
{
printList();
return 0;
}
void cleanup_module(void)
{
printk(KERN_INFO "Goodbye world proc.\n");
}
The output:
[ 8215.627038] pid: 9147 ffff88007bbe9200 (3)
[ 8215.627043] pid: 9148 ffff8800369b0200 (2)
[ 8215.627045] pid: 9149 ffff8800369b0200 (2)
[ 8215.627047] pid: 9150 ffff88007bbe9200 (3)
[ 8215.627049] pid: 9151 ffff88007bbe9200 (3)
[ 8215.627051] pid: 9154 ffff8800a46d4600 (1)
[ 8215.627053] count is: 6
[ 8215.653741] Goodbye world proc.
About the computer:
$ uname -a
Linux k 3.13.0-39-generic #66-Ubuntu SMP Tue Oct 28 13:30:27 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
$ cat /proc/cpuinfo | grep 'processor' | wc -l
2
So my questions are:
How can I print all runnable processes in a nicer way?
How are running queues made and managed?
Are the running queues somehow linked each other? (How?)
$ps -A -l and find the instance where both the process state (R) and the Process Flags (1) are as mentioned.
You can try this below cmd.
Sample output.
127:~$ ps -A -l | grep -e R -e D
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
1 S 0 1367 2 0 80 0 - 0 - ? 00:00:01 SEPDRV_ABNORMAL
4 R 1000 2634 2569 2 80 0 - 794239 - ? 00:25:06 Web Content
1 D 0 20091 2 0 80 0 - 0 - ? 00:00:00 kworker/3:2
4 R 1000 21077 9361 0 80 0 - 7229 - pts/17 00:00:00 ps

Why using conv=notrunc when cloning a disk with dd?

If you look up how to clone an entire disk to another one on the web, you will find something like that:
dd if=/dev/sda of=/dev/sdb conv=notrunc,noerror
While I understand the noerror, I am getting a hard time understanding why people think that notrunc is required for "data integrity" (as ArchLinux's Wiki states, for instance).
Indeed, I do agree on that if you are copying a partition to another partition on another disk, and you do not want to overwrite the entire disk, just one partition. In thise case notrunc, according to dd's manual page, is what you want.
But if you're cloning an entire disk, what does notrunc change for you? Just time optimization?
TL;DR version:
notrunc is only important to prevent truncation when writing into a file. This has no effect on a block device such as sda or sdb.
Educational version
I looked into the coreutils source code which contains dd.c to see how notrunc is processed.
Here's the segment of code that I'm looking at:
int opts = (output_flags
| (conversions_mask & C_NOCREAT ? 0 : O_CREAT)
| (conversions_mask & C_EXCL ? O_EXCL : 0)
| (seek_records || (conversions_mask & C_NOTRUNC) ? 0 : O_TRUNC));
/* Open the output file with *read* access only if we might
need to read to satisfy a `seek=' request. If we can't read
the file, go ahead with write-only access; it might work. */
if ((! seek_records
|| fd_reopen (STDOUT_FILENO, output_file, O_RDWR | opts, perms) < 0)
&& (fd_reopen (STDOUT_FILENO, output_file, O_WRONLY | opts, perms) < 0))
error (EXIT_FAILURE, errno, _("opening %s"), quote (output_file));
We can see here that if notrunc is not specified, then the output file will be opened with O_TRUNC. Looking below at how O_TRUNC is treated, we can see that a normal file will get truncated if written into.
O_TRUNC
If the file already exists and is a regular file and the open
mode allows writing (i.e., is O_RDWR or O_WRONLY) it will be truncated
to length 0. If the file is a FIFO or terminal device file, the
O_TRUNC flag is ignored. Otherwise the effect of O_TRUNC is
unspecified.
Effects of notrunc / O_TRUNC I
In the following example, we start out by creating junk.txt of size 1024 bytes. Next, we write 512 bytes to the beginning of it with conv=notrunc. We can see that the size stays the same at 1024 bytes. Finally, we try it without the notrunc option and we can see that the new file size is 512. This is because it was opened with O_TRUNC.
$ dd if=/dev/urandom of=junk.txt bs=1024 count=1
$ ls -l junk.txt
-rw-rw-r-- 1 akyserr akyserr 1024 Dec 11 17:08 junk.txt
$ dd if=/dev/urandom of=junk.txt bs=512 count=1 conv=notrunc
$ ls -l junk.txt
-rw-rw-r-- 1 akyserr akyserr 1024 Dec 11 17:10 junk.txt
$ dd if=/dev/urandom of=junk.txt bs=512 count=1
$ ls -l junk.txt
-rw-rw-r-- 1 akyserr akyserr 512 Dec 11 17:10 junk.txt
Effects of notrunc / O_TRUNC II
I still haven't answered your original question of why when doing a disk-to-disk clone, why conv=notrunc is important. According to the above definition, O_TRUNC seems to be ignored when opening certain special files, and I would expect this to be true for block device nodes too. However, I don't want to assume anything and will attempt to prove it here.
openclose.c
I've written a simple C program here which opens and closes a file given as an argument with the O_TRUNC flag.
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
int main(int argc, char * argv[])
{
if (argc < 2)
{
fprintf(stderr, "Not enough arguments...\n");
return (1);
}
int f = open(argv[1], O_RDWR | O_TRUNC);
if (f >= 0)
{
fprintf(stderr, "%s was opened\n", argv[1]);
close(f);
fprintf(stderr, "%s was closed\n", argv[1]);
} else {
perror("Opening device node");
}
return (0);
}
Normal File Test
We can see below that the simple act of opening and closing a file with O_TRUNC will cause it to lose anything that was already there.
$ dd if=/dev/urandom of=junk.txt bs=1024 count=1^C
$ ls -l junk.txt
-rw-rw-r-- 1 akyserr akyserr 1024 Dec 11 17:26 junk.txt
$ ./openclose junk.txt
junk.txt was opened
junk.txt was closed
$ ls -l junk.txt
-rw-rw-r-- 1 akyserr akyserr 0 Dec 11 17:27 junk.txt
Block Device File Test
Let's try a similar test on a USB flash drive. We can see that we start out with a single partition on the USB flash drive. If it get's 'truncated', perhaps the partition will go away (considering it's defined in the first 512 bytes of the disk)?
$ ls -l /dev/sdc*
brw-rw---- 1 root disk 8, 32 Dec 11 17:22 /dev/sdc
brw-rw---- 1 root disk 8, 33 Dec 11 17:22 /dev/sdc1
$ sudo ./openclose /dev/sdc
/dev/sdc was opened
/dev/sdc was closed
$ sudo ./openclose /dev/sdc1
/dev/sdc1 was opened
/dev/sdc1 was closed
$ ls -l /dev/sdc*
brw-rw---- 1 root disk 8, 32 Dec 11 17:31 /dev/sdc
brw-rw---- 1 root disk 8, 33 Dec 11 17:31 /dev/sdc1
It looks like it has no affect whatsoever to open either the disk or the disk's partition 1 with the O_TRUNC option. From what I can tell, the filesystem is still mountable and the files are accessible and intact.
Effects of notrunc / O_TRUNC III
Okay, for my final test I will use dd on my flash drive directly. I will start by writing 512 bytes of random data, then writing 256 bytes of zeros at the beginning. For the final test, we will verify that the last 256 bytes remained unchanged.
$ sudo dd if=/dev/urandom of=/dev/sdc bs=256 count=2
$ sudo hexdump -n 512 /dev/sdc
0000000 3fb6 d17f 8824 a24d 40a5 2db3 2319 ac5b
0000010 c659 5780 2d04 3c4e f985 053c 4b3d 3eba
0000020 0be9 8105 cec4 d6fb 5825 a8e5 ec58 a38e
0000030 d736 3d47 d8d3 9067 8db8 25fb 44da af0f
0000040 add7 c0f2 fc11 d734 8e26 00c6 cfbb b725
0000050 8ff7 3e79 af97 2676 b9af 1c0d fc34 5eb1
0000060 6ede 318c 6f9f 1fea d200 39fe 4591 2ffb
0000070 0464 9637 ccc5 dfcc 3b0f 5432 cdc3 5d3c
0000080 01a9 7408 a10a c3c4 caba 270c 60d0 d2f7
0000090 2f8d a402 f91a a261 587b 5609 1260 a2fc
00000a0 4205 0076 f08b b41b 4738 aa12 8008 053f
00000b0 26f0 2e08 865e 0e6a c87e fc1c 7ef6 94c6
00000c0 9ced 37cf b2e7 e7ef 1f26 0872 cd72 54a4
00000d0 3e56 e0e1 bd88 f85b 9002 c269 bfaa 64f7
00000e0 08b9 5957 aad6 a76c 5e37 7e8a f5fc d066
00000f0 8f51 e0a1 2d69 0a8e 08a9 0ecf cee5 880c
0000100 3835 ef79 0998 323d 3d4f d76b 8434 6f20
0000110 534c a847 e1e2 778c 776b 19d4 c5f1 28ab
0000120 a7dc 75ea 8a8b 032a c9d4 fa08 268f 95e8
0000130 7ff3 3cd7 0c12 4943 fd23 33f9 fe5a 98d9
0000140 aa6d 3d89 c8b4 abec 187f 5985 8e0f 58d1
0000150 8439 b539 9a45 1c13 68c2 a43c 48d2 3d1e
0000160 02ec 24a5 e016 4c2d 27be 23ee 8eee 958e
0000170 dd48 b5a1 10f1 bf8e 1391 9355 1b61 6ffa
0000180 fd37 7718 aa80 20ff 6634 9213 0be1 f85e
0000190 a77f 4238 e04d 9b64 d231 aee8 90b6 5c7f
00001a0 5088 2a3e 0201 7108 8623 b98a e962 0860
00001b0 c0eb 21b7 53c6 31de f042 ac80 20ee 94dd
00001c0 b86c f50d 55bc 32db 9920 fd74 a21e 911a
00001d0 f7db 82c2 4d16 3786 3e18 2c0f 47c2 ebb0
00001e0 75af 6a8c 2e80 c5b6 e4ea a9bc a494 7d47
00001f0 f493 8b58 0765 44c5 ff01 42a3 b153 d395
$ sudo dd if=/dev/zero of=/dev/sdc bs=256 count=1
$ sudo hexdump -n 512 /dev/sdc
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
0000100 3835 ef79 0998 323d 3d4f d76b 8434 6f20
0000110 534c a847 e1e2 778c 776b 19d4 c5f1 28ab
0000120 a7dc 75ea 8a8b 032a c9d4 fa08 268f 95e8
0000130 7ff3 3cd7 0c12 4943 fd23 33f9 fe5a 98d9
0000140 aa6d 3d89 c8b4 abec 187f 5985 8e0f 58d1
0000150 8439 b539 9a45 1c13 68c2 a43c 48d2 3d1e
0000160 02ec 24a5 e016 4c2d 27be 23ee 8eee 958e
0000170 dd48 b5a1 10f1 bf8e 1391 9355 1b61 6ffa
0000180 fd37 7718 aa80 20ff 6634 9213 0be1 f85e
0000190 a77f 4238 e04d 9b64 d231 aee8 90b6 5c7f
00001a0 5088 2a3e 0201 7108 8623 b98a e962 0860
00001b0 c0eb 21b7 53c6 31de f042 ac80 20ee 94dd
00001c0 b86c f50d 55bc 32db 9920 fd74 a21e 911a
00001d0 f7db 82c2 4d16 3786 3e18 2c0f 47c2 ebb0
00001e0 75af 6a8c 2e80 c5b6 e4ea a9bc a494 7d47
00001f0 f493 8b58 0765 44c5 ff01 42a3 b153 d395
Summary
Through the above experimentation, it seems that notrunc is only important for when you have a file you want to write into, but don't want to truncate it. This seems to have no effect on a block device such as sda or sdb.

Linux proc/pid/fd for stdout is 11?

Executing a script with stdout redirected to a file. So /proc/$$/fd/1 should point to that file (since stdout fileno is 1). However, actual fd of the file is 11. Please, explain, why.
Here is session:
$ cat hello.sh
#!/bin/sh -e
ls -l /proc/$$/fd >&2
$ ./hello.sh > /tmp/1
total 0
lrwx------ 1 nga users 64 May 28 22:05 0 -> /dev/pts/0
lrwx------ 1 nga users 64 May 28 22:05 1 -> /dev/pts/0
lr-x------ 1 nga users 64 May 28 22:05 10 -> /home/me/hello.sh
l-wx------ 1 nga users 64 May 28 22:05 11 -> /tmp/1
lrwx------ 1 nga users 64 May 28 22:05 2 -> /dev/pts/0
I have a suspicion, but this is highly dependent on how your shell behaves. The file descriptors you see are:
0: standard input
1: standard output
2: standard error
10: the running script
11: a backup copy of the script's normal standard out
Descriptors 10 and 11 are close on exec, so won't be present in the ls process. 0-2 are, however, prepared for ls before forking. I see this behaviour in dash (Debian Almquist shell), but not in bash (Bourne again shell). Bash instead does the file descriptor manipulations after forking, and incidentally uses 255 rather than 10 for the script. Doing the change after forking means it won't have to restore the descriptors in the parent, so it doesn't have the spare copy to dup2 from.
The output of strace can be helpful here.
The relevant section is
fcntl64(1, F_DUPFD, 10) = 11
close(1) = 0
fcntl64(11, F_SETFD, FD_CLOEXEC) = 0
dup2(2, 1) = 1
stat64("/home/random/bin/ls", 0xbf94d5e0) = -1 ENOENT (No such file or
+++++++>directory)
stat64("/usr/local/bin/ls", 0xbf94d5e0) = -1 ENOENT (No such file or directory)
stat64("/usr/bin/ls", 0xbf94d5e0) = -1 ENOENT (No such file or directory)
stat64("/bin/ls", {st_mode=S_IFREG|0755, st_size=96400, ...}) = 0
clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
+++++++>child_tidptr=0xb75a8938) = 22748
wait4(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 22748
--- SIGCHLD (Child exited) # 0 (0) ---
dup2(11, 1) = 1
So, the shell moves the existing stdout to an available file descriptor above 10 (namely, 11), then moves the existing stderr onto its own stdout (due to the >&2 redirect), then restores 11 to its own stdout when the ls command is finished.

How to find all serial devices (ttyS, ttyUSB, ..) on Linux without opening them?

What is the proper way to get a list of all available serial ports/devices on a Linux system?
In other words, when I iterate over all devices in /dev/, how do I tell which ones are serial ports in the classic way, that is, those usually supporting baud rates and RTS/CTS flow control?
The solution would be coded in C.
I ask because I am using a third-party library that does this clearly wrong: It appears to only iterate over /dev/ttyS*. The problem is that there are, for instance, serial ports over USB (provided by USB-RS232 adapters), and those are listed under /dev/ttyUSB*. And reading the Serial-HOWTO at Linux.org, I get the idea that there'll be other name spaces as well, as time comes.
So I need to find the official way to detect serial devices. The problem is that none appears to be documented, or I can't find it.
I imagine one way would be to open all files from /dev/tty* and call a specific ioctl() on them that is only available on serial devices. Would that be a good solution, though?
Update
hrickards suggested to look at the source for "setserial".
Its code does exactly what I had in mind:
First, it opens a device with:
fd = open (path, O_RDWR | O_NONBLOCK)
Then it invokes:
ioctl (fd, TIOCGSERIAL, &serinfo)
If that call returns no error, then it's a serial device, apparently.
I found similar code in Serial Programming/termios, which suggested to also add the O_NOCTTY option.
There is one problem with this approach, though:
When I tested this code on BSD Unix (that is, Mac OS X), it worked as well. However, serial devices that are provided through Bluetooth cause the system (driver) to try to connect to the Bluetooth device, which takes a while before it'll return with a timeout error. This is caused by just opening the device. And I can imagine that similar things can happen on Linux as well - ideally, I should not need to open the device to figure out its type. I wonder if there's also a way to invoke ioctl functions without an open, or open a device in a way that it does not cause connections to be made?
What should I do?
The /sys filesystem should contain plenty information for your quest. My system (2.6.32-40-generic #87-Ubuntu) suggests:
/sys/class/tty
Which gives you descriptions of all TTY devices known to the system. A trimmed down example:
# ll /sys/class/tty/ttyUSB*
lrwxrwxrwx 1 root root 0 2012-03-28 20:43 /sys/class/tty/ttyUSB0 -> ../../devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.4/2-1.4:1.0/ttyUSB0/tty/ttyUSB0/
lrwxrwxrwx 1 root root 0 2012-03-28 20:44 /sys/class/tty/ttyUSB1 -> ../../devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.3/2-1.3:1.0/ttyUSB1/tty/ttyUSB1/
Following one of these links:
# ll /sys/class/tty/ttyUSB0/
insgesamt 0
drwxr-xr-x 3 root root 0 2012-03-28 20:43 ./
drwxr-xr-x 3 root root 0 2012-03-28 20:43 ../
-r--r--r-- 1 root root 4096 2012-03-28 20:49 dev
lrwxrwxrwx 1 root root 0 2012-03-28 20:43 device -> ../../../ttyUSB0/
drwxr-xr-x 2 root root 0 2012-03-28 20:49 power/
lrwxrwxrwx 1 root root 0 2012-03-28 20:43 subsystem -> ../../../../../../../../../../class/tty/
-rw-r--r-- 1 root root 4096 2012-03-28 20:43 uevent
Here the dev file contains this information:
# cat /sys/class/tty/ttyUSB0/dev
188:0
This is the major/minor node. These can be searched in the /dev directory to get user-friendly names:
# ll -R /dev |grep "188, *0"
crw-rw---- 1 root dialout 188, 0 2012-03-28 20:44 ttyUSB0
The /sys/class/tty dir contains all TTY devices but you might want to exclude those pesky virtual terminals and pseudo terminals. I suggest you examine only those which have a device/driver entry:
# ll /sys/class/tty/*/device/driver
lrwxrwxrwx 1 root root 0 2012-03-28 19:07 /sys/class/tty/ttyS0/device/driver -> ../../../bus/pnp/drivers/serial/
lrwxrwxrwx 1 root root 0 2012-03-28 19:07 /sys/class/tty/ttyS1/device/driver -> ../../../bus/pnp/drivers/serial/
lrwxrwxrwx 1 root root 0 2012-03-28 19:07 /sys/class/tty/ttyS2/device/driver -> ../../../bus/platform/drivers/serial8250/
lrwxrwxrwx 1 root root 0 2012-03-28 19:07 /sys/class/tty/ttyS3/device/driver -> ../../../bus/platform/drivers/serial8250/
lrwxrwxrwx 1 root root 0 2012-03-28 20:43 /sys/class/tty/ttyUSB0/device/driver -> ../../../../../../../../bus/usb-serial/drivers/ftdi_sio/
lrwxrwxrwx 1 root root 0 2012-03-28 21:15 /sys/class/tty/ttyUSB1/device/driver -> ../../../../../../../../bus/usb-serial/drivers/ftdi_sio/
In recent kernels (not sure since when) you can list the contents of /dev/serial to get a list of the serial ports on your system. They are actually symlinks pointing to the correct /dev/ node:
flu0#laptop:~$ ls /dev/serial/
total 0
drwxr-xr-x 2 root root 60 2011-07-20 17:12 by-id/
drwxr-xr-x 2 root root 60 2011-07-20 17:12 by-path/
flu0#laptop:~$ ls /dev/serial/by-id/
total 0
lrwxrwxrwx 1 root root 13 2011-07-20 17:12 usb-Prolific_Technology_Inc._USB-Serial_Controller-if00-port0 -> ../../ttyUSB0
flu0#laptop:~$ ls /dev/serial/by-path/
total 0
lrwxrwxrwx 1 root root 13 2011-07-20 17:12 pci-0000:00:0b.0-usb-0:3:1.0-port0 -> ../../ttyUSB0
This is a USB-Serial adapter, as you can see. Note that when there are no serial ports on the system, the /dev/serial/ directory does not exists. Hope this helps :).
I found
dmesg | grep tty
doing the job.
I'm doing something like the following code. It works for USB-devices and also the stupid serial8250-devuices that we all have 30 of - but only a couple of them realy works.
Basically I use concept from previous answers. First enumerate all tty-devices in /sys/class/tty/. Devices that does not contain a /device subdir is filtered away. /sys/class/tty/console is such a device. Then the devices actually containing a devices in then accepted as valid serial-port depending on the target of the driver-symlink fx.
$ ls -al /sys/class/tty/ttyUSB0//device/driver
lrwxrwxrwx 1 root root 0 sep 6 21:28 /sys/class/tty/ttyUSB0//device/driver -> ../../../bus/platform/drivers/usbserial
and for ttyS0
$ ls -al /sys/class/tty/ttyS0//device/driver
lrwxrwxrwx 1 root root 0 sep 6 21:28 /sys/class/tty/ttyS0//device/driver -> ../../../bus/platform/drivers/serial8250
All drivers driven by serial8250 must be probes using the previously mentioned ioctl.
if (ioctl(fd, TIOCGSERIAL, &serinfo)==0) {
// If device type is no PORT_UNKNOWN we accept the port
if (serinfo.type != PORT_UNKNOWN)
the_port_is_valid
Only port reporting a valid device-type is valid.
The complete source for enumerating the serialports looks like this. Additions are welcome.
#include <stdlib.h>
#include <dirent.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <linux/serial.h>
#include <iostream>
#include <list>
using namespace std;
static string get_driver(const string& tty) {
struct stat st;
string devicedir = tty;
// Append '/device' to the tty-path
devicedir += "/device";
// Stat the devicedir and handle it if it is a symlink
if (lstat(devicedir.c_str(), &st)==0 && S_ISLNK(st.st_mode)) {
char buffer[1024];
memset(buffer, 0, sizeof(buffer));
// Append '/driver' and return basename of the target
devicedir += "/driver";
if (readlink(devicedir.c_str(), buffer, sizeof(buffer)) > 0)
return basename(buffer);
}
return "";
}
static void register_comport( list<string>& comList, list<string>& comList8250, const string& dir) {
// Get the driver the device is using
string driver = get_driver(dir);
// Skip devices without a driver
if (driver.size() > 0) {
string devfile = string("/dev/") + basename(dir.c_str());
// Put serial8250-devices in a seperate list
if (driver == "serial8250") {
comList8250.push_back(devfile);
} else
comList.push_back(devfile);
}
}
static void probe_serial8250_comports(list<string>& comList, list<string> comList8250) {
struct serial_struct serinfo;
list<string>::iterator it = comList8250.begin();
// Iterate over all serial8250-devices
while (it != comList8250.end()) {
// Try to open the device
int fd = open((*it).c_str(), O_RDWR | O_NONBLOCK | O_NOCTTY);
if (fd >= 0) {
// Get serial_info
if (ioctl(fd, TIOCGSERIAL, &serinfo)==0) {
// If device type is no PORT_UNKNOWN we accept the port
if (serinfo.type != PORT_UNKNOWN)
comList.push_back(*it);
}
close(fd);
}
it ++;
}
}
list<string> getComList() {
int n;
struct dirent **namelist;
list<string> comList;
list<string> comList8250;
const char* sysdir = "/sys/class/tty/";
// Scan through /sys/class/tty - it contains all tty-devices in the system
n = scandir(sysdir, &namelist, NULL, NULL);
if (n < 0)
perror("scandir");
else {
while (n--) {
if (strcmp(namelist[n]->d_name,"..") && strcmp(namelist[n]->d_name,".")) {
// Construct full absolute file path
string devicedir = sysdir;
devicedir += namelist[n]->d_name;
// Register the device
register_comport(comList, comList8250, devicedir);
}
free(namelist[n]);
}
free(namelist);
}
// Only non-serial8250 has been added to comList without any further testing
// serial8250-devices must be probe to check for validity
probe_serial8250_comports(comList, comList8250);
// Return the lsit of detected comports
return comList;
}
int main() {
list<string> l = getComList();
list<string>::iterator it = l.begin();
while (it != l.end()) {
cout << *it << endl;
it++;
}
return 0;
}
I think I found the answer in my kernel source documentation:
/usr/src/linux-2.6.37-rc3/Documentation/filesystems/proc.txt
1.7 TTY info in /proc/tty
-------------------------
Information about the available and actually used tty's can be found in the
directory /proc/tty.You'll find entries for drivers and line disciplines in
this directory, as shown in Table 1-11.
Table 1-11: Files in /proc/tty
..............................................................................
File Content
drivers list of drivers and their usage
ldiscs registered line disciplines
driver/serial usage statistic and status of single tty lines
..............................................................................
To see which tty's are currently in use, you can simply look into the file
/proc/tty/drivers:
> cat /proc/tty/drivers
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master
pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
serial /dev/cua 5 64-67 serial:callout
serial /dev/ttyS 4 64-67 serial
/dev/tty0 /dev/tty0 4 0 system:vtmaster
/dev/ptmx /dev/ptmx 5 2 system
/dev/console /dev/console 5 1 system:console
/dev/tty /dev/tty 5 0 system:/dev/tty
unknown /dev/tty 4 1-63 console
Here is a link to this file:
http://git.kernel.org/?p=linux/kernel/git/next/linux-next.git;a=blob_plain;f=Documentation/filesystems/proc.txt;hb=e8883f8057c0f7c9950fa9f20568f37bfa62f34a
setserial with the -g option appears to do what you want and the C source is available at http://www.koders.com/c/fid39344DABD14604E70DF1B8FEA7D920A94AF78BF8.aspx.
I have no serial device here to test it, but if you have python and dbus you can try it yourself.
import dbus
bus = dbus.SystemBus()
hwmanager = bus.get_object('org.freedesktop.Hal', '/org/freedesktop/Hal/Manager')
hwmanager_i = dbus.Interface(hwmanager, 'org.freedesktop.Hal.Manager')
print hwmanager_i.FindDeviceByCapability("serial")
If it fails you can search inside hwmanager_i.GetAllDevicesWithProperties() to see if the capability name "serial" that I just guessed has a different name.
HTH
Using /proc/tty/drivers only indicates which tty drivers are loaded. If you're looking for a list of the serial ports check out /dev/serial, it will have two subdirectories: by-id and by-path.
EX:
# find . -type l
./by-path/usb-0:1.1:1.0-port0
./by-id/usb-Prolific_Technology_Inc._USB-Serial_Controller-if00-port0
Thanks to this post: https://superuser.com/questions/131044/how-do-i-know-which-dev-ttys-is-my-serial-port
My approach via group dialout to get every tty with user 'dialout'
ls -l /dev/tty* | grep 'dialout'
to only get its folder
ls -l /dev/tty* | grep 'dialout' | rev | cut -d " " -f1 | rev
easy listen to the tty output e.g. when arduino serial out:
head --lines 1 < /dev/ttyUSB0
listen to every tty out for one line only:
for i in $(ls -l /dev/tty* | grep 'dialout' | rev | cut -d " " -f1 | rev); do head --lines 1 < $i; done
I really like the approach via looking for drivers:
ll /sys/class/tty/*/device/driver
You can pick the tty-Name now:
ls /sys/class/tty/*/device/driver | grep 'driver' | cut -d "/" -f 5
I do not have a USB serial device, but there must be a way to find the real ports using the HAL libraries directly:
====================================================================
#! /usr/bin/env bash
#
# Uses HAL to find existing serial hardware
#
for sport in $(hal-find-by-capability --capability serial) ; do
hal-get-property --udi "${sport}" --key serial.device
done
====================================================================
The posted python-dbus code nor this sh script lists the bluetooth /dev/rfcomm* devices, so it is not the best solution.
Note that on other unix platforms, the serial ports are not named ttyS? and even in linux, some serial cards allow you to name the devices. Assuming a pattern in the serial devices names is wrong.
My solution is based on udev library and below code is based on the example2:
#include <string.h>
#include <libudev.h>
bool enumerate_serial_ports(void)
{
struct udev* udev;
struct udev_enumerate* enumerate;
struct udev_list_entry* devices, *dev_list_entry;
/* create udev object */
udev = udev_new();
if (!udev)
{
SPDLOG_ERROR("Cannot create udev context.");
return false;
}
/* create enumerate object */
enumerate = udev_enumerate_new(udev);
if (!enumerate)
{
SPDLOG_ERROR("Cannot create enumerate context.");
udev_unref(udev);
return false;
}
udev_enumerate_add_match_subsystem(enumerate, "tty");
udev_enumerate_scan_devices(enumerate);
/* fillup device list */
devices = udev_enumerate_get_list_entry(enumerate);
if (!devices)
{
SPDLOG_ERROR("Failed to get device list.");
udev_enumerate_unref(enumerate);
udev_unref(udev);
return false;
}
udev_list_entry_foreach(dev_list_entry, devices)
{
struct udev_device* dev = udev_device_new_from_syspath(udev, udev_list_entry_get_name(dev_list_entry));
// filter out virtual ports
if((udev_device_get_sysnum(dev) != NULL) && (strstr(udev_device_get_devpath(dev), "/devices/virtual/") == NULL))
{
SPDLOG_DEBUG("subsystem={}", udev_device_get_subsystem(dev));
SPDLOG_DEBUG("syspath={}", udev_device_get_syspath(dev));
SPDLOG_DEBUG("sysname={}", udev_device_get_sysname(dev));
SPDLOG_DEBUG("sysnum={}", udev_device_get_sysnum(dev));
SPDLOG_DEBUG("devnode={}", udev_device_get_devnode(dev));
SPDLOG_DEBUG("-----------------------------------------");
}
/* free dev */
udev_device_unref(dev);
}
/* free enumerate */
udev_enumerate_unref(enumerate);
/* free udev */
udev_unref(udev);
return true;
}
And the output on a RPI4 with an USB serial adaptor:
[ debug ][11:50:47.645] - subsystem=tty
[ debug ][11:50:47.645] - syspath=/sys/devices/platform/scb/fd500000.pcie/pci0000:00/0000:00:00.0/0000:01:00.0/usb1/1-1/1-1.3/1-1.3:1.0/ttyUSB0/tty/ttyUSB0
[ debug ][11:50:47.645] - sysname=ttyUSB0
[ debug ][11:50:47.645] - sysnum=0
[ debug ][11:50:47.645] - devnode=/dev/ttyUSB0
[ debug ][11:50:47.645] - -----------------------------------------
[ debug ][11:50:47.645] - subsystem=tty
[ debug ][11:50:47.645] - syspath=/sys/devices/platform/soc/fe201000.serial/tty/ttyAMA0
[ debug ][11:50:47.645] - sysname=ttyAMA0
[ debug ][11:50:47.645] - sysnum=0
[ debug ][11:50:47.645] - devnode=/dev/ttyAMA0
[ debug ][11:50:47.645] - -----------------------------------------
[ debug ][11:50:47.646] - subsystem=tty
[ debug ][11:50:47.646] - syspath=/sys/devices/platform/soc/fe215040.serial/tty/ttyS0
[ debug ][11:50:47.646] - sysname=ttyS0
[ debug ][11:50:47.646] - sysnum=0
[ debug ][11:50:47.646] - devnode=/dev/ttyS0
[ debug ][11:50:47.646] - -----------------------------------------
The serial communication manager library has many API and features targeted for the task you want. If the device is a USB-UART its VID/PID can be used. If the device is BT-SPP than platform specific APIs can be used. Take a look at this project for serial port programming: https://github.com/RishiGupta12/serial-communication-manager
#dmesg | grep tty
This command show you every port
yes, I know, I'm too late (as always). Here is my piece of code (based on the reply of mk2). Maybe this helps someone:
std::vector<std::string> find_serial_ports()
{
std::vector<std::string> ports;
std::filesystem::path kdr_path{"/proc/tty/drivers"};
if (std::filesystem::exists(kdr_path))
{
std::ifstream ifile(kdr_path.generic_string());
std::string line;
std::vector<std::string> prefixes;
while (std::getline(ifile, line))
{
std::vector<std::string> items;
auto it = line.find_first_not_of(' ');
while (it != std::string::npos)
{
auto it2 = line.substr(it).find_first_of(' ');
if (it2 == std::string::npos)
{
items.push_back(line.substr(it));
break;
}
it2 += it;
items.push_back(line.substr(it, it2 - it));
it = it2 + line.substr(it2).find_first_not_of(' ');
}
if (items.size() >= 5)
{
if (items[4] == "serial" && items[0].find("serial") != std::string::npos)
{
prefixes.emplace_back(items[1]);
}
}
}
ifile.close();
for (auto& p: std::filesystem::directory_iterator("/dev"))
{
for (const auto& pf : prefixes)
{
auto dev_path = p.path().generic_string();
if (dev_path.size() >= pf.size() && std::equal(dev_path.begin(), dev_path.begin() + pf.size(), pf.begin()))
{
ports.emplace_back(dev_path);
}
}
}
}
return ports;
}
Using setserial tool:
setserial -gG /dev/{ttyUSB,ttyS,ttyACM}* 2>/dev/null | grep -Ev "ttyS[0-9]+.*irq\s0\s*"
And if you want only the port device path on the output:
setserial -gG /dev/{ttyUSB,ttyS,ttyACM}* 2>/dev/null | grep -Ev "ttyS[0-9]+.*irq\s0\s*" | cut -d' ' -f1
Possibly this solutions are not applicable to all needs, since some USB devices can be named in another way by UDEV, so more generic but less optimal (NOT RECOMMENDED):
setserial -gG /dev/* 2>/dev/null | grep -Ev "ttyS[0-9]+.*irq\s0\s*" | cut -d' ' -f1

Resources