Creating a monad for incrementally storing results type not matching - haskell

I'm trying to get a better understanding of monads by trying to create one. The idea is to create a monad that just stores all results. However, I just can't get the type to match up.
main :: IO ()
main = do
let
v1 = return (1,1)
v2 = return (8,8)
x = move v1 v2
print x
newtype Accum a = Accum { open :: (a, [a]) }
deriving (Show)
instance Monad Accum where
return v = Accum (v, [v])
(>>=) m f = let (r1, l1) = open m
r2 = f r1
(r3, l3) = open r2
in Accum (r3, l1 ++ l3)
move :: Accum (Int,Int) -> Accum (Int,Int) -> Accum (Int,Int)
move p1 p2 = do
(x1,y1) <- p1
(x2,y2) <- p2
return (x1+x2, y1+y2)
In line Accum (r3, l1 ++ l3), l1 is of the type a where as l3 is always type b. How can I let the side effect of accumulating the results be done for me by the monad?

Your code is very similar to the Writer [a] monad, and I don't think there is a simpler way of fixing it than closing the gap in all but naming. Specifically:
Since a monad must allow an arbitrary result type, the type of the effect part cannot depend on the type of the result part, so change the type definition to
newtype Accum a b = Accum { open :: (b, [a]) }
To fulfil the monad laws, return must not have a nontrivial effect, so change the definition of that to
return v = Accum (v, [])
Now you need to have an explicit action to store with, aka tell from MonadWriter:
tell as = Accum ((), as)
Finally, change the type signatures to include the extra type argument as appropriate.

I read your request as
Create a Monad that records all intermediate results.
Such a thing cannot exist in haskell. First of all, a monad must be a functor. I assume you already know what that is.
I see only two implementations for fmap that roughly keep the "record computation" semantic and pass type checking:
fmap f (Accum (x,xs)) = Accum (f x, map f xs) -- map history
fmap f (Accum (x,xs)) = Accum (f x,[]) -- forget history
The first one makes your Accum a identical to a non-empty list [a], lists are well known to be monad instances; not quite what you want.
The second is even duller.
As you turn from functors to monads with bind (>>=), things do not get better.
As Ørjan Johansen already stated, the a in m a can be of any type. As you want to get a better understanding of monads, how about this: In m a let the a be m a itself. Now you have m (m a). And for every monad, there is a method
join :: m (m a) -> m a
that removes one level of nesting. A list of lists can be turned into a list, a tree of trees into a tree, and an IO-Action, that yields an IO-Action can be turned into a single action by just executing one after the other.
I must resist the urge to write another crappy monad tutorial...

Related

Can you determine the min or max of a list using only the list monad?

Trying to understand the relation between Monad and Foldable. I am aware that that part of the value of the Monad, Applicative and Functor typeclasses is their ability to lift functions over structure, but what if I wanted to generate a summary value (e.g. min or max) for the values contained in a Monad?
This would be impossible without an accumulator right (like in foldable)? And to have an accumulator you have to inject or destroy structure?
min :: Ord a => a -> a -> a
foldMin :: (Foldable t, Ord a) => t a -> Maybe a
foldMin t = foldr go Nothing t
where
go x Nothing = Just x
go x (Just y) = Just (min x y)
Here, the Nothing value is the accumulator. So it would not be possible to do an operation that produces a summary value like this within the confines of a do block?
I'm not entirely sure I understand the question, so forgive me if this isn't a useful answer, but as I understand it, the core of the question is this:
So it would not be possible to do an operation that produces a summary value like this within the confines of a do block?
Correct, that would not be possible. Haskell's do notation is syntactic sugar over Monad, so basically syntactic sugar over >>= and return.
return, as you know, doesn't let you 'access' the contents of the Monad, so the only access to the contents you have is via >>=, and in the case of the list monad, for instance, that only gives you one value at a time.
Notice that Foldable doesn't even require that the data container is a Functor (much less a Monad). Famously, Set isn't a Functor instance, but it is a Foldable instance.
You can, for example, find the minimum value in a set:
Prelude Data.Foldable Set> foldr (\x -> Just . maybe x (min x)) Nothing $ Set.fromList [42, 1337, 90125, 2112]
Just 42
The contrived and inefficient code below is the closest I can get to "using only the list monad". This is probably not what the OP is looking for, but here it is.
I also exploit head (which you can replace with listToMaybe, if we want totality), and null. I also use empty (which you can replace with []).
The code works by non deterministically picking an element m and then checking that no greater elements exist. This has a quadratic complexity.
import Control.Applicative
maximum :: Ord a => [a] -> a
maximum xs = head maxima
where
isMax m = null $ do
x <- xs
if x > m
then return x
else empty
maxima = do
m <- xs -- non deterministically pick a maximum
if isMax m
then return m
else empty
I'm also not sure, what the actual question ist, but the need for an accumulator can be hidden with a Monoid instance. Then - for your minimum example - you can use use foldMap from Data.Foldable to map and merge all values of your Foldable. E.g.:
data Min a = Min { getMin :: Maybe a } deriving Show
instance Ord a => Monoid (Min a) where
mempty = Min Nothing
mappend a (Min Nothing) = a
mappend (Min Nothing) b = b
mappend (Min (Just a)) (Min (Just b)) = Min (Just (min a b))
foldMin :: (Foldable t, Ord a) => t a -> Maybe a
foldMin = getMin . foldMap (Min . Just)

What is the intuitive meaning of "join"?

What is the intuitive meaning of join for a Monad?
The monads-as-containers analogies make sense to me, and inside these analogies join makes sense. A value is double-wrapped and we unwrap one layer. But as we all know, a monad is not a container.
How might one write sensible, understandable code using join in normal circumstances, say when in IO?
An action :: IO (IO a) is a way of producing a way of producing an a. join action, then, is a way of producing an a by running the outermost producer of action, taking the producer it produced and then running that as well, to finally get to that juicy a.
join collapses consecutive layers of the type constructor.
A valid join must satisfy the property that, for any number of consecutive applications of the type constructor, it shouldn't matter the order in which we collapse the layers.
For example
ghci> let lolol = [[['a'],['b','c']],[['d'],['e']]]
ghci> lolol :: [[[Char]]]
ghci> lolol :: [] ([] ([] Char)) -- the type can also be expressed like this
ghci> join (fmap join lolol) -- collapse inner layers first
"abcde"
ghci> join (join lolol) -- collapse outer layers first
"abcde"
(We used fmap to "get inside" the outer monadic layer so that we could collapse the inner layers first.)
A small non container example where join is useful: for the function monad (->) a, join is equivalent to \f x -> f x x, a function of type (a -> a -> b) -> a -> b that applies two times the same argument to another function.
For the List monad, join is simply concat, and concatMap is join . fmap.
So join implicitly appears in any list expression which uses concat
or concatMap.
Suppose you were asked to find all of the numbers which are divisors of any
number in an input list. If you have a divisors function:
divisors :: Int -> [Int]
divisors n = [ d | d <- [1..n], mod n d == 0 ]
you might solve the problem like this:
foo xs = concat $ (map divisors xs)
Here we are thinking of solving the problem by first mapping the
divisors function over all of the input elements and then concatenating
all of the resulting lists. You might even think that this is a very
"functional" way of solving the problem.
Another approch would be to write a list comprehension:
bar xs = [ d | x <- xs, d <- divisors x ]
or using do-notation:
bar xs = do x <- xs
d <- divisors
return d
Here it might be said we're thinking a little more
imperatively - first draw a number from the list xs; then draw
a divisors from the divisors of the number and yield it.
It turns out, though, that foo and bar are exactly the same function.
Morever, these two approaches are exactly the same in any monad.
That is, for any monad, and appropriate monadic functions f and g:
do x <- f
y <- g x is the same as: (join . fmap g) f
return y
For instance, in the IO monad if we set f = getLine and g = readFile,
we have:
do x <- getLine
y <- readFile x is the same as: (join . fmap readFile) getLine
return y
The do-block is a more imperative way of expressing the action: first read a
line of input; then treat returned string as a file name, read the contents
of the file and finally return the result.
The equivalent join expression seems a little unnatural in the IO-monad.
However it shouldn't be as we are using it in exactly the same way as we
used concatMap in the first example.
Given an action that produces another action, run the action and then run the action that it produces.
If you imagine some kind of Parser x monad that parses an x, then Parser (Parser x) is a parser that does some parsing, and then returns another parser. So join would flatten this into a Parser x that just runs both actions and returns the final x.
Why would you even have a Parser (Parser x) in the first place? Basically, because fmap. If you have a parser, you can fmap a function that changes the result over it. But if you fmap a function that itself returns a parser, you end up with a Parser (Parser x), where you probably want to just run both actions. join implements "just run both actions".
I like the parsing example because a parser typically has a runParser function. And it's clear that a Parser Int is not an integer. It's something that can parse an integer, after you give it some input to parse from. I think a lot of people end up thinking of an IO Int as being just a normal integer but with this annoying IO bit that you can't get rid of. It isn't. It's an unexecuted I/O operation. There's no integer "inside" it; the integer doesn't exist until you actually perform the I/O.
I find these things easier to interpret by writing out the types and refactoring them a bit to reveal what the functions do.
Reader monad
The Reader type is defined thus, and its join function has the type shown:
newtype Reader r a = Reader { runReader :: r -> a }
join :: Reader r (Reader r a) -> Reader r a
Since this is a newtype, this means that the type Reader r a is isomorphic to r -> a. So we can refactor the type definition to give us this type that, albeit it's not the same, it's really "the same" with scare quotes:
In the (->) r monad, which is isomorphic to Reader r, join is the function:
join :: (r -> r -> a) -> r -> a
So the Reader join is the function that takes a two-place function (r -> r -> a) and applies to the same value at both its argument positions.
Writer monad
Since the Writer type has this definition:
newtype Writer w a = Writer { runWriter :: (a, w) }
...then when we remove the newtype, its join function has a type isomorphic to:
join :: Monoid w => ((a, w), w) -> (a, w)
The Monoid constraint needs to be there because the Monad instance for Writer requires it, and it lets us guess right away what the function does:
join ((a, w0), w1) = (a, w0 <> w1)
State monad
Similarly, since State has this definition:
newtype State s a = State { runState :: s -> (a, s) }
...then its join is like this:
join :: (s -> (s -> (a, s), s)) -> s -> (a, s)
...and you can also venture just writing it directly:
join f s0 = (a, s2)
where
(g, s1) = f s0
(a, s2) = g s1
{- Here's the "map" to the variable names in the function:
f g s2 s1 s0 s2
join :: (s -> (s -> (a, s ), s )) -> s -> (a, s )
-}
If you stare at this type a bit, you might think that it bears some resemblance to both the Reader and Writer's types for their join operations. And you'd be right! The Reader, Writer and State monads are all instances of a more general pattern called update monads.
List monad
join :: [[a]] -> [a]
As other people have pointed out, this is the type of the concat function.
Parsing monads
Here comes a really neat thing to realize. Very often, "fancy" monads turn out to be combinations or variants of "basic" ones like Reader, Writer, State or lists. So often what I do when confronted with a novel monad is ask: which of the basic monads does it resemble, and how?
Take for example parsing monads, which have been brought up in other answers here. A simplistic parser monad (with no support for important things like error reporting) looks like this:
newtype Parser a = Parser { runParser :: String -> [(a, String)] }
A Parser is a function that takes a string as input, and returns a list of candidate parses, where each candidate parse is a pair of:
A parse result of type a;
The leftovers (the suffix of the input string that was not consumed in that parse).
But notice that this type looks very much like the state monad:
newtype Parser a = Parser { runParser :: String -> [(a, String)] }
newtype State s a = State { runState :: s -> (a, s) }
And this is no accident! Parser monads are nondeterministic state monads, where the state is the unconsumed portion of the input string, and parse steps generate alternatives that may be later rejected in light of further input. List monads are often called "nondeterminism" monads, so it's no surprise that a parser resembles a mix of the state and list monads.
And this intuition can be systematized by using monad transfomers. The state monad transformer is defined like this:
newtype StateT s m a = StateT { runStateT :: s -> m (a, s) }
Which means that the Parser type from above can be written like this as well:
type Parser a = StateT String [] a
...and its Monad instance follows mechanically from those of StateT and [].
The IO monad
Imagine we could enumerate all of the possible primitive IO actions, somewhat like this:
{-# LANGUAGE GADTs #-}
data Command a where
-- An action that writes a char to stdout
putChar :: Char -> Command ()
-- An action that reads a char from stdin
getChar :: Command Char
-- ...
Then we could think of the IO type as this (which I've adapted from the highly-recommended Operational monad tutorial):
data IO a where
-- An `IO` action that just returns a constant value.
Return :: a -> IO a
-- An action that binds the result of a `Command` to
-- a function that computes the next step after it.
Bind :: Command x -> (x -> IO a) -> IO a
instance Monad IO where ...
Then join action would then look like this:
join :: IO (IO a) -> IO a
-- If the action is just `Return`, then its payload already
-- is what we need to return.
join (Return ioa) = ioa
-- If the action is a `Bind`, then its "next step" function
-- `f` produces `IO (IO a)`, so we can just recursively stick
-- a `join` to its result end.
join (Bind cmd f) = Bind cmd (join . f)
So all that the join does here is "chase down" the IO action until it sees a result that fits the pattern Return (ma :: IO a), and strip out the outer Return.
So what did I do here? Just like for parser monads, I just defined (or rather copied) a toy model of the IO type that has the virtue of being transparent. Then I work out the behavior of join from the toy model.

The "reader" monad

OK, so the writer monad allows you to write stuff to [usually] some kind of container, and get that container back at the end. In most implementations, the "container" can actually be any monoid.
Now, there is also a "reader" monad. This, you might think, would offer the dual operation - incrementally reading from some kind of container, one item at a time. In fact, this is not the functionality that the usual reader monad provides. (Instead, it merely offers easy access to a semi-global constant.)
To actually write a monad which is dual to the usual writer monad, we would need some kind of structure which is dual to a monoid.
Does anybody have any idea what this dual structure might be?
Has anybody written this monad? Is there a well-known name for it?
The dual of a monoid is a comonoid. Recall that a monoid is defined as (something isomorphic to)
class Monoid m where
create :: () -> m
combine :: (m,m) -> m
with these laws
combine (create (),x) = x
combine (x,create ()) = x
combine (combine (x,y),z) = combine (x,combine (y,z))
thus
class Comonoid m where
delete :: m -> ()
split :: m -> (m,m)
some standard operations are needed
first :: (a -> b) -> (a,c) -> (b,c)
second :: (c -> d) -> (a,c) -> (a,d)
idL :: ((),x) -> x
idR :: (x,()) -> x
assoc :: ((x,y),z) -> (x,(y,z))
with laws like
idL $ first delete $ (split x) = x
idR $ second delete $ (split x) = x
assoc $ first split (split x) = second split (split x)
This typeclass looks weird for a reason. It has an instance
instance Comonoid m where
split x = (x,x)
delete x = ()
in Haskell, this is the only instance. We can recast reader as the exact dual of writer, but since there is only one instance for comonoid, we get something isomorphic to the standard reader type.
Having all types be comonoids is what makes the category "Cartesian" in "Cartesian Closed Category." "Monoidal Closed Categories" are like CCCs but without this property, and are related to substructural type systems. Part of the appeal of linear logic is the increased symmetry that this is an example of. While, having substructural types allows you to define comonoids with more interesting properties (supporting things like resource management). In fact, this provides a framework for understand the role of copy constructors and destructors in C++ (although C++ does not enforce the important properties because of the existence of pointers).
EDIT: Reader from comonoids
newtype Reader r x = Reader {runReader :: r -> x}
forget :: Comonoid m => (m,a) -> a
forget = idL . first delete
instance Comonoid r => Monad (Reader r) where
return x = Reader $ \r -> forget (r,x)
m >>= f = \r -> let (r1,r2) = split r in runReader (f (runReader m r1)) r2
ask :: Comonoid r => Reader r r
ask = Reader id
note that in the above code every variable is used exactly once after binding (so these would all type with linear types). The monad law proofs are trivial, and only require the comonoid laws to work. Hence, Reader really is dual to Writer.
I'm not entirely sure of what the dual of a monoid should be, but thinking of dual (probably incorrectly) as the opposite of something (simply on the basis that a Comonad is the dual of a Monad, and has all the same operations but the opposite way round). Rather than basing it on mappend and mempty I would base it on:
fold :: (Foldable f, Monoid m) => f m -> m
If we specialise f to a list here, we get:
fold :: Monoid m => [m] -> m
This seems to me to contain all of the monoid class, in particular.
mempty == fold []
mappend x y == fold [x, y]
So, then I guess the dual of this different monoid class would be:
unfold :: (Comonoid m) => m -> [m]
This is a lot like the monoid factorial class that I have seen on hackage here.
So on this basis, I think the 'reader' monad you describe would be a supply monad. The supply monad is effectively a state transformer of a list of values, so that at any point we can choose to be supplied with an item from the list. In this case, the list would be the result of unfold.supply monad
I should stress, I am no Haskell expert, nor an expert theoretician. But this is what your description made me think of.
Supply is based on State, which makes it suboptimal for some applications. For example, we might want to make an infinite tree of supplied values (e.g. randoms):
tree :: (Something r) => Supply r (Tree r)
tree = Branch <$> supply <*> sequenceA [tree, tree]
But since Supply is based on State, all the labels will be bottom except for the ones one the leftmost path down the tree.
You need something splittable (like in #PhillipJF's Comonoid). But there is a problem if you try to make this into a Monad:
newtype Supply r a = Supply { runSupply :: r -> a }
instance (Splittable r) => Monad (Supply r) where
return = Supply . const
Supply m >>= f = Supply $ \r ->
let (r',r'') = split r in
runSupply (f (m r')) r''
Because the monad laws require f >>= return = f, so that means that r'' = r in the definition of (>>=).. But, the monad laws also require that return x >>= f = f x, so r' = r as well. Thus, for Supply to be a monad, split x = (x,x), and thus you've got the regular old Reader back again.
A lot of monads that are used in Haskell aren't real monads -- i.e. they only satisfy the laws up to some equivalence relation. E.g. many nondeterminism monads will give results in a different order if you transform according to the laws. But that's okay, that's still monad enough if you're just wondering whether a particular element appears in the list of outputs, rather than where.
If you allow Supply to be a monad up to some equivalence relation, then you can get nontrivial splits. E.g. value-supply will construct splittable entities which will dole out unique labels from a list in an unspecified order (using unsafe* magic) -- so a supply monad of value supply would be a monad up to permutation of labels. This is all that is needed for many applications. And, in fact, there is a function
runSupply :: (forall r. Eq r => Supply r a) -> a
which abstracts over this equivalence relation to give a well-defined pure interface, because the only thing it allows you to do to labels is to see if they are equal, and that doesn't change if you permute them. If this runSupply is the only observation you allow on Supply, then Supply on a supply of unique labels is a real monad.

Is there an elegant way to have functions return functions of the same type (in a tuple)

I'm using haskell to implement a pattern involving functions that return a value, and themselves (or a function of the same type). Right now I've implemented this like so:
newtype R a = R (a , a -> R a)
-- some toy functions to demonstrate
alpha :: String -> R String
alpha str
| str == reverse str = R (str , omega)
| otherwise = R (reverse str , alpha)
omega :: String -> R String
omega (s:t:r)
| s == t = R (s:t:r , alpha)
| otherwise = R (s:s:t:r , omega)
The driving force for these types of functions is a function called cascade:
cascade :: (a -> R a) -> [a] -> [a]
cascade _ [] = []
cascade f (l:ls) = el : cascade g ls where
R (el , g) = f l
Which takes a seed function and a list, and returns a list created by applying the seed function to the first element of the list, applying the function returned by that to the second element of the list, and so on and so forth.
This works--however, in the process of using this for slightly more useful things, I noticed that a lot of times I had the basic units of which are functions that returned functions other than themselves only rarely; and explicitly declaring a function to return itself was becoming somewhat tedious. I'd rather be able to use something like a Monad's return function, however, I have no idea what bind would do for functions of these types, especially since I never intended these to be linked with anything other than the function they return in the first place.
Trying to shoehorn this into a Monad started worrying me about whether or not what I was doing was useful, so, in short, what I want to know is:
Is what I'm doing a Bad Thing? if not,
Has what I'm doing been done before/am I reinventing the wheel here? if not,
Is there an elegant way to do this, or have I already reached this and am being greedy by wanting some kind of return analogue?
(Incidentally, besides, 'functions that return themeselves' or 'recursive data structure (of functions)', I'm not quite sure what this kind of pattern is called, and has made trying to do effective research in it difficult--if anyone could give me a name for this pattern (if it indeed has one), that alone would be very helpful)
As a high-level consideration, I'd say that your type represents a stateful stream transformer. What's a bit confusing here is that your type is defined as
newtype R a = R (a , a -> R a)
instead of
newtype R a = R (a -> (R a, a))
which would be a bit more natural in the streaming context because you typically don't "produce" something if you haven't received anything yet. Your functions would then have simpler types too:
alpha, omage :: R String
cascade :: R a -> [a] -> [a]
If we try to generalize this idea of a stream transformer, we soon realize that the case where we transform a list of as into a list of as is just a special case. With the proper infrastructure in place we could just as well produce a list of bs. So we try to generalize the type R:
newtype R a b = R (a -> (R a b, b))
I've seen this kind of structure being called a Circuit, which happens to be a full-blown arrow. Arrows are a generalization of the concept of functions and are an even more powerful construct than monads. I can't pretend to understand the category-theoretical background, but it's definitely interesting to play with them. For example, the trivial transformation is just Cat.id:
import Control.Category
import Control.Arrow
import Prelude hiding ((.), id)
import qualified Data.List as L
-- ... Definition of Circuit and instances
cascade :: Circuit a b -> [a] -> [b]
cascade cir = snd . L.mapAccumL unCircuit cir
--
ghci> cascade (Cat.id) [1,2,3,4]
[1,2,3,4]
We can also simulate state by parameterizing the circuit we return as the continuation:
countingCircuit :: (a -> b) -> Circuit a (Int, b)
countingCircuit f = cir 0
where cir i = Circuit $ \x -> (cir (i+1), (i, f x))
--
ghci> cascade (countingCircuit (+5)) [10,3,2,11]
[(0,15),(1,8),(2,7),(3,16)]
And the fact that our circuit type is a category gives us a nice way to compose circuits:
ghci> cascade (countingCircuit (+5) . arr (*2)) [10,3,2,11]
[(0,25),(1,11),(2,9),(3,27)]
It looks like what you have is a simplified version of a stream. That is to
say, a representation of an infinite stream of values. I don't think you can
easily define this as a monad, because you use the same type for your seed as
for your elements, which makes defining fmap difficult (it seems that you
would need to invert the function provided to fmap so as to be able to
recover the seed). You can make this a monad by making the seed type
independent of the element type like so
{-# LANGUAGE ExistentialQuantification #-}
data Stream a = forall s. Stream a s (s -> Stream a)
This will allow you to define a Functor and Monad instance as follows
unfold :: (b -> (a, b)) -> b -> Stream a
unfold f b = Stream a b' (unfold f)
where (a, b') = f b
shead :: Stream a -> a
shead (Stream a _ _) = a
stail :: Stream a -> Stream a
stail (Stream _ b f) = f b
diag :: Stream (Stream a) -> Stream a
diag = unfold f
where f str = (shead $ shead str, stail $ fmap stail str)
sjoin :: Stream (Stream a) -> Stream a
sjoin = diag
instance Functor Stream where
fmap f (Stream a b g) = Stream (f a) b (fmap f . g)
instance Monad Stream where
return = unfold (\x -> (x, x))
xs >>= f = diag $ fmap f xs
Note that this only obeys the Monad laws when viewed as a set, as it does not
preserve element ordering.
This explanation
of the stream monad uses infinite lists, which works just as well in Haskell
since they can be generated in a lazy fashion. If you check out the
documentation for the Stream type in the vector library, you will
find a more complicated version, so that it can be used in efficient stream fusion.
I don't have much to add, except to note that your cascade function can be written as a left fold (and hence also as a right fold, though I haven't done the transformation.)
cascade f = reverse . fst . foldl func ([], f)
where
func (rs,g) s = let R (r,h) = g s in (r:rs,h)

Monads with Join() instead of Bind()

Monads are usually explained in turns of return and bind. However, I gather you can also implement bind in terms of join (and fmap?)
In programming languages lacking first-class functions, bind is excruciatingly awkward to use. join, on the other hand, looks quite easy.
I'm not completely sure I understand how join works, however. Obviously, it has the [Haskell] type
join :: Monad m => m (m x) -> m x
For the list monad, this is trivially and obviously concat. But for a general monad, what, operationally, does this method actually do? I see what it does to the type signatures, but I'm trying to figure out how I'd write something like this in, say, Java or similar.
(Actually, that's easy: I wouldn't. Because generics is broken. ;-) But in principle the question still stands...)
Oops. It looks like this has been asked before:
Monad join function
Could somebody sketch out some implementations of common monads using return, fmap and join? (I.e., not mentioning >>= at all.) I think perhaps that might help it to sink in to my dumb brain...
Without plumbing the depths of metaphor, might I suggest to read a typical monad m as "strategy to produce a", so the type m value is a first class "strategy to produce a value". Different notions of computation or external interaction require different types of strategy, but the general notion requires some regular structure to make sense:
if you already have a value, then you have a strategy to produce a value (return :: v -> m v) consisting of nothing other than producing the value that you have;
if you have a function which transforms one sort of value into another, you can lift it to strategies (fmap :: (v -> u) -> m v -> m u) just by waiting for the strategy to deliver its value, then transforming it;
if you have a strategy to produce a strategy to produce a value, then you can construct a strategy to produce a value (join :: m (m v) -> m v) which follows the outer strategy until it produces the inner strategy, then follows that inner strategy all the way to a value.
Let's have an example: leaf-labelled binary trees...
data Tree v = Leaf v | Node (Tree v) (Tree v)
...represent strategies to produce stuff by tossing a coin. If the strategy is Leaf v, there's your v; if the strategy is Node h t, you toss a coin and continue by strategy h if the coin shows "heads", t if it's "tails".
instance Monad Tree where
return = Leaf
A strategy-producing strategy is a tree with tree-labelled leaves: in place of each such leaf, we can just graft in the tree which labels it...
join (Leaf tree) = tree
join (Node h t) = Node (join h) (join t)
...and of course we have fmap which just relabels leaves.
instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Node h t) = Node (fmap f h) (fmap f t)
Here's an strategy to produce a strategy to produce an Int.
Toss a coin: if it's "heads", toss another coin to decide between two strategies (producing, respectively, "toss a coin for producing 0 or producing 1" or "produce 2"); if it's "tails" produce a third ("toss a coin for producing 3 or tossing a coin for 4 or 5").
That clearly joins up to make a strategy producing an Int.
What we're making use of is the fact that a "strategy to produce a value" can itself be seen as a value. In Haskell, the embedding of strategies as values is silent, but in English, I use quotation marks to distinguish using a strategy from just talking about it. The join operator expresses the strategy "somehow produce then follow a strategy", or "if you are told a strategy, you may then use it".
(Meta. I'm not sure whether this "strategy" approach is a suitably generic way to think about monads and the value/computation distinction, or whether it's just another crummy metaphor. I do find leaf-labelled tree-like types a useful source of intuition, which is perhaps not a surprise as they're the free monads, with just enough structure to be monads at all, but no more.)
PS The type of "bind"
(>>=) :: m v -> (v -> m w) -> m w
says "if you have a strategy to produce a v, and for each v a follow-on strategy to produce a w, then you have a strategy to produce a w". How can we capture that in terms of join?
mv >>= v2mw = join (fmap v2mw mv)
We can relabel our v-producing strategy by v2mw, producing instead of each v value the w-producing strategy which follows on from it — ready to join!
join = concat -- []
join f = \x -> f x x -- (e ->)
join f = \s -> let (f', s') = f s in f' s' -- State
join (Just (Just a)) = Just a; join _ = Nothing -- Maybe
join (Identity (Identity a)) = Identity a -- Identity
join (Right (Right a)) = Right a; join (Right (Left e)) = Left e;
join (Left e) = Left e -- Either
join ((a, m), m') = (a, m' `mappend` m) -- Writer
-- N.B. there is a non-newtype-wrapped Monad instance for tuples that
-- behaves like the Writer instance, but with the tuple order swapped
join f = \k -> f (\f' -> f' k) -- Cont
Calling fmap (f :: a -> m b) (x ::ma) produces values (y ::m(m b)) so it is a very natural thing to use join to get back values (z :: m b).
Then bind is defined simply as bind ma f = join (fmap f ma), thus achieving the Kleisly compositionality of functions of (:: a -> m b) variety, which is what it is really all about:
ma `bind` (f >=> g) = (ma `bind` f) `bind` g -- bind = (>>=)
= (`bind` g) . (`bind` f) $ ma
= join . fmap g . join . fmap f $ ma
And so, with flip bind = (=<<), we have
((g <=< f) =<<) = (g =<<) . (f =<<) = join . (g <$>) . join . (f <$>)
OK, so it's not really good form to answer your own question, but I'm going to note down my thinking in case it enlightens anybody else. (I doubt it...)
If a monad can be thought of as a "container", then both return and join have pretty obvious semantics. return generates a 1-element container, and join turns a container of containers into a single container. Nothing hard about that.
So let us focus on monads which are more naturally thought of as "actions". In that case, m x is some sort of action which yields a value of type x when you "execute" it. return x does nothing special, and then yields x. fmap f takes an action that yields an x, and constructs an action that computes x and then applies f to it, and returns the result. So far, so good.
It's fairly obvious that if f itself generates an action, then what you end up with is m (m x). That is, an action that computes another action. In a way, that's maybe even simpler to wrap your mind around than the >>= function which takes an action and a "function that produces an action" and so on.
So, logically speaking, it seems join would run the first action, take the action it produces, and then run that. (Or rather, join would return an action that does what I just described, if you want to split hairs.)
That seems to be the central idea. To implement join, you want to run an action, which then gives you another action, and then you run that. (Whatever "run" happens to mean for this particular monad.)
Given this insight, I can take a stab at writing some join implementations:
join Nothing = Nothing
join (Just mx) = mx
If the outer action is Nothing, return Nothing, else return the inner action. Then again, Maybe is more of a container than an action, so let's try something else...
newtype Reader s x = Reader (s -> x)
join (Reader f) = Reader (\ s -> let Reader g = f s in g s)
That was... painless. A Reader is really just a function that takes a global state and only then returns its result. So to unstack, you apply the global state to the outer action, which returns a new Reader. You then apply the state to this inner function as well.
In a way, it's perhaps easier than the usual way:
Reader f >>= g = Reader (\ s -> let x = f s in g x)
Now, which one is the reader function, and which one is the function that computes the next reader...?
Now let's try the good old State monad. Here every function takes an initial state as input but also returns a new state along with its output.
data State s x = State (s -> (s, x))
join (State f) = State (\ s0 -> let (s1, State g) = f s0 in g s1)
That wasn't too hard. It's basically run followed by run.
I'm going to stop typing now. Feel free to point out all the glitches and typos in my examples... :-/
I've found many explanations of monads that say "you don't have to know anything about category theory, really, just think of monads as burritos / space suits / whatever".
Really, the article that demystified monads for me just said what categories were, described monads (including join and bind) in terms of categories, and didn't bother with any bogus metaphors:
http://en.wikibooks.org/wiki/Haskell/Category_theory
I think the article is very readable without much math knowledge required.
Asking what a type signature in Haskell does is rather like asking what an interface in Java does.
It, in some literal sense, "doesn't". (Though, of course, you will typically have some sort of purpose associated with it, that's mostly in your mind, and mostly not in the implementation.)
In both cases you are declaring legal sequences of symbols in the language which will be used in later definitions.
Of course, in Java, I suppose you could say that an interface corresponds to a type signature which is going to be implemented literally in the VM. You can get some polymorphism this way -- you can define a name that accepts an interface, and you can provide a different definition for the name which accepts a different interface. Something similar happens in Haskell, where you can provide a declaration for a name which accepts one type and then another declaration for that name which treats a different type.
This is Monad explained in one picture. The 2 functions in the green category are not composable, when being mapped to the blue category with join . fmap (strictly speaking, they are one category), they become composable. Monad is about turning a function of type T -> Monad<U> into a function of type Monad<T> -> Monad<U>.

Resources