Generating a Markov transition matrix with known, but stochastic, state times - montecarlo

I have looked for an answer for a while, but with no luck. I am trying to develop a discrete time Markov model. Presently, I have 5 states, with the 5th state being the absorbing state. I also know the variable time durations that each state stays in. So say state one might take 20 years to transition to state 2 and this is normally distributed. Is there a way to calculate the transition matrix with this data?
update: I'm thinking along the lines of Monte-carlo Markov chain simulation, but I'm unsure how to structure the MCMC model.

Have you considered taking into account only the first occurrence of each state in your data? This way you can populate your transition matrix using the obtained Markov chain with no consecutive identical states.

Related

Represent state space graph for Markov process for car racing example

Could anybody please help me with designing state space graph for Markov Decision process of car racing example from Berkeley CS188.
car racing example
For example I can do 100 actions and I want to run value iteration to get best policy to maximize my rewards.
When I have only 3 states (Cool, Warm and Overheated) I don't know how to add "End" state and complete MDP.
I am thinking about having 100 Cool states and 100 Warm states, and for example from Cool1 you can go to Cool2, Warm2 or Overheated and so on.
In this example my values of states close to 0 are higher than states closed to 100.
Am I missing something in MDP?
There should only be 3 possible states. "Cool" and "warm" states are recurrent, and "overheated" state is absorbing because the probability of leaving the state is 0.
You can have two actions, slow or fast, for both"cool" and "warm" states, as described in the problem statement. The probability transition matrix and step rewards can be easily established from the chart. For example, P(go fast, from cool to warm) = 0.5, and R(go fast, from cool to warm) = 2.
Depending on the objective, you can solve it as a finite horizon or infinite horizon MDP.

How to interpret some syntax (n.adapt, update..) in jags?

I feel very confused with the following syntax in jags, for example,
n.iter=100,000
thin=100
n.adapt=100
update(model,1000,progress.bar = "none")
Currently I think
n.adapt=100 means you set the first 100 draws as burn-in,
n.iter=100,000 means the MCMC chain has 100,000 iterations including the burn-in,
I have checked the explanation for this question a lot of time but still not sure whether my interpretation about n.iter and n.adapt is correct and how to understand update() and thinning.
Could anyone explain to me?
This answer is based on the package rjags, which takes an n.adapt argument. First I will discuss the meanings of adaptation, burn-in, and thinning, and then I will discuss the syntax (I sense that you are well aware of the meaning of burn-in and thinning, but not of adaptation; a full explanation may make this answer more useful to future readers).
Burn-in
As you probably understand from introductions to MCMC sampling, some number of iterations from the MCMC chain must be discarded as burn-in. This is because prior to fitting the model, you don't know whether you have initialized the MCMC chain within the characteristic set, the region of reasonable posterior probability. Chains initialized outside this region take a finite (sometimes large) number of iterations to find the region and begin exploring it. MCMC samples from this period of exploration are not random draws from the posterior distribution. Therefore, it is standard to discard the first portion of each MCMC chain as "burn-in". There are several post-hoc techniques to determine how much of the chain must be discarded.
Thinning
A separate problem arises because in all but the simplest models, MCMC sampling algorithms produce chains in which successive draws are substantially autocorrelated. Thus, summarizing the posterior based on all iterations of the MCMC chain (post burn-in) may be inadvisable, as the effective posterior sample size can be much smaller than the analyst realizes (note that STAN's implementation of Hamiltonian Monte-Carlo sampling dramatically reduces this problem in some situations). Therefore, it is standard to make inference on "thinned" chains where only a fraction of the MCMC iterations are used in inference (e.g. only every fifth, tenth, or hundredth iteration, depending on the severity of the autocorrelation).
Adaptation
The MCMC samplers that JAGS uses to sample the posterior are governed by tunable parameters that affect their precise behavior. Proper tuning of these parameters can produce gains in the speed or de-correlation of the sampling. JAGS contains machinery to tune these parameters automatically, and does so as it draws posterior samples. This process is called adaptation, but it is non-Markovian; the resulting samples do not constitute a Markov chain. Therefore, burn-in must be performed separately after adaptation. It is incorrect to substitute the adaptation period for the burn-in. However, sometimes only relatively short burn-in is necessary post-adaptation.
Syntax
Let's look at a highly specific example (the code in the OP doesn't actually show where parameters like n.adapt or thin get used). We'll ask rjags to fit the model in such a way that each step will be clear.
n.chains = 3
n.adapt = 1000
n.burn = 10000
n.iter = 20000
thin = 50
my.model <- jags.model(mymodel.txt, data=X, inits=Y, n.adapt=n.adapt) # X is a list pointing JAGS to where the data are, Y is a vector or function giving initial values
update(my.model, n.burn)
my.samples <- coda.samples(my.model, params, n.iter=n.iter, thin=thin) # params is a list of parameters for which to set trace monitors (i.e. we want posterior inference on these parameters)
jags.model() builds the directed acyclic graph and then performs the adaptation phase for a number of iterations given by n.adapt.
update() performs the burn-in on each chain by running the MCMC for n.burn iterations without saving any of the posterior samples (skip this step if you want to examine the full chains and discard a burn-in period post-hoc).
coda.samples() (from the coda package) runs the each MCMC chain for the number of iterations specified by n.iter, but it does not save every iteration. Instead, it saves only ever nth iteration, where n is given by thin. Again, if you want to determine your thinning interval post-hoc, there is no need to thin at this stage. One advantage of thinning at this stage is that the coda syntax makes it simple to do so; you don't have to understand the structure of the MCMC object returned by coda.samples() and thin it yourself. The bigger advantage to thinning at this stage is realized if n.iter is very large. For example, if autocorrelation is really bad, you might run 2 million iterations and save only every thousandth (thin=1000). If you didn't thin at this stage, you (and your RAM) would need to manipulate an object with three chains of two million numbers each. But by thinning as you go, the final object only has 2 thousand numbers in each chain.

Audio signal source separation with neural network

What I am trying to do is separating the audio sources and extract its pitch from the raw signal.
I modeled this process myself, as represented below:
Each sources oscillate in normal modes, often makes its component peaks' frequency integer multiplication. It's known as Harmonic. And then resonanced, finally combined linearly.
As seen in above, I've got many hints in frequency response pattern of audio signals, but almost no idea how to 'separate' it. I've tried countless of my own models. This is one of them:
FFT the PCM
Get peak frequency bins and amplitudes.
Calculate pitch candidate frequency bins.
For each pitch candidates, using recurrent neural network analyze all the peaks and find appropriate combination of peaks.
Separate analyzed pitch candidates.
Unfortunately, I've got non of them successfully separates the signal until now.
I want any of advices to solve these kind of problem.
Especially in modeling of source separation like my one above.
Because no one has really attempted to answer this, and because you've marked it with the neural-network tag, I'm going to address the suitability of a neural network to this kind of problem. As the question was somewhat non-technical, this answer will also be "high level".
Neural networks require some sort of sample set from which to learn. In order to "teach" a neural net to solve this problem you would essentially need to have a working set of known solutions to work from. Do you have this? If so, read on. If not, a neural is probably not what you are seeking. You stated that you have "many hints" but no real solution. This leads me to believe you probably don't have sample sets. If you can get them, great, otherwise you might be out of luck.
Supposing now that you have a sample set of Raw Signal samples and corresponding Source 1 and Source 2 outputs... Well, now you're going to need a method for deciding on a topology. Assuming you don't know a lot about how neural nets work (and don't want to), and assuming you also don't know the exact degree of complexity of the problem, I would probably recommend the open source NEAT package to get you started. I am not affiliated in any way with this project, but I have used it, and it allows you to (relatively) intelligently evolve neural network topologies to fit the problem.
Now, in terms of how a neural net would solve this specific problem. The first thing that comes to mind is that all audio signals are essentially time-series. That is to say, the information they convey is somehow dependent and related to the data at previous timesteps (e.g. the detection of some waveform cannot be done from a single time-point; it requires information about previous timesteps as well). Again, there's a million ways of solving this problem, but since I'm already recommending NEAT I'd probably suggest you take a look at the C++ NEAT Time Series mod.
If you're going down this route, you'll probably be wanting to use some sort of sliding window to provide information about the recent past at each time step. For a quick and dirty intro to sliding windows, check out this SO question:
Time Series Prediction via Neural Networks
The size of the sliding window can be important, especially if you're not using recurrent neural nets. Recurrent networks allow neural nets to remember previous time steps (at the cost of performance - NEAT is already recurrent so that choice is made for you here). You will probably want the sliding window length (ie. the number of timesteps in the past provided at every time step) to be roughly equal to your conservative guess of the largest number of previous timesteps required to gain enough information to split your waveform.
I'd say this is probably enough information to get you started.
When it comes to deciding how to provide the neural net with the data, you'll first want to normalise the input signals (consider a sigmoid function) and experiment with different transfer functions (sigmoid would probably be a good starting point).
I would imagine you'll want to have 2 output neurons, providing normalised amplitude (which you would denormalise via the inverse of the sigmoid function) as the output representing Source 1 and Source 2 respectively. For the fitness value (the way you judge the ability of each tested network to solve the problem) would be something along the lines of the negative of the RMS error of the output signal against the actual known signal (ie. tested against the samples I was referring to earlier that you will need to procure).
Suffice to say, this will not be a trivial operation, but it could work if you have enough samples to train the network against. What is a good number of samples? Well as a rule of thumb it's roughly a number that is large enough such that a simple polynomial function of order N (where N is the number of neurons in the netural network you require to solve the problem) cannot fit all of the samples accurately. This is basically to ensure you are not simply overfitting the problem, which is a serious issue with neural networks.
I hope this has been helpful! Best of luck.
Additional note: your work to date wouldn't have been in vain if you go down this route. A neural network is likely to benefit from additional "help" in the form of FFTs and other signal modelling "inputs", so you might want to consider taking the signal processing you have already done, organising into an analog, continuous representation and feeding it as an input alongside the input signal.

Distance dependent Chinese Restaurant Process maybe

I'm new to machine learning and want to implement the distance dependent Chinese Restaurant process in MATLAB for the clustering of audio tracks.
I'm looking to use the dd-CRP on 26 features. I'm guessing the process might go like this
Read in 1st feature vector and assign it a "table"
Read in 2nd feature vector and compare it to the 1st "table", maybe using the cosine angle(due to high dimension) of the two vectors and if it agrees within some defined theta, join that table, else start a new one.
Read in next feature and repeat step 2 for the new feature vector for each existing table.
While this is occurring, I will be keeping track of how many tables there are.
I will be running the algorithm over say for example 16 audio tracks. The way the audio will be fed into the algorithm is the first feature vector will be from say the first frame from audio track 1, the second feature vector from form the first frame in track 2 etc. as I'm trying to find out which audio tracks like to cluster together most, but I don't want to define how many centroids there are. Obviously I'll have to keep track of which audio track is at which "table".
Does this make sense?
This is not a Chinese Restaurant Process. This is a heuristic algorithm which has some similarity to a Chinese Restaurant Process. In a CRP everything is phrased in terms of priors over the assignments of items to clusters (the tables analogy), and these are combined with a likelihood function for each cluster (which formalises the similarity function you described). Inference is then done by Gibbs Sampling, which means non-deterministically sampling which cluster each track is assigned to in turn given all the other assignments. Variational methods for non-parametrics are still in a very preliminary state.
Why do you want to use a CRP? Do you think you'll get something out of it beyond more conventional clustering methods? The bar to entry for the implementation and proper understanding of non-parametrics is pretty high, and they're often of little practical use at the moment because of the constraints on inference I mentioned.
You can use the X-means algorithm, which automatically determines the optimal number of centroids (and hence number of clusters) based on the Bayesian Information Criterion (or BIC). In short, the algorithm looks for how dense each cluster is, and how far is each cluster from the other.

Supervised Learning for User Behavior over Time

I want to use machine learning to identify the signature of a user who converts to a subscriber of a website given their behavior over time.
Let's say my website has 6 different features which can be used before subscribing and users can convert to a subscriber at any time.
For a given user I have stats which represent the intensity on a continuous range of that user's interaction with features 1-6 on a daily basis so:
D1: f1,f2,f3,f4,f5,f6
D2: f1,f2,f3,f4,f5,f6
D3: f1,f2,f3,f4,f5,f6
D4: f1,f2,f3,f4,f5,f6
Let's say on day 5, the user converts.
What machine using algorithms would help me identify which are the most common patterns in feature usage which lead to a conversion?
(I know this is a super basic classification question, but I couldn't find a good example using longitudinal data, where input vectors are ordered by time like I have)
To develop the problem further, let's assume that each feature has 3 intensities at which the user can interact (H, M, L).
We can then represent each user as a string of states of interaction intensity. So, for a user:
LLLLMM LLMMHH LLHHHH
Would mean on day one they only interacted significantly with features 5 and 6, but by the third day they were interacting highly with features 3 through 6.
N-gram Style
I could make these states words and the lifetime of a user a sentence. (Would probably need to add a "conversion" word to the vocabulary as well)
If I ran these "sentences" through an n-gram model, I could get the likely future state of a user given his/her past few state which is somewhat interesting. But, what I really want to know the most common sets of n-grams that lead to the conversion word. Rather than feeding in an n-gram and getting the next predicted word, I want to give the predicted word and get back the 10 most common n-grams (from my data) which would be likely to lead to the word.
Amaç Herdağdelen suggests identifying n-grams to practical n and then counting how many n-gram states each user has. Then correlating with conversion data (I guess no conversion word in this example). My concern is that there would be too many n-grams to make this method practical. (if each state has 729 possibilities, and we're using trigrams, thats a lot of possible trigrams!)
Alternatively, could I just go thru the data logging the n-grams which led to the conversion word and then run some type of clustering on them to see what the common paths are to a conversion?
Survival Style
Suggested by Iterator, I understand the analogy to a survival problem, but the literature here seems to focus on predicting time to death as opposed to the common sequence of events which leads to death. Further, when looking up the Cox Proportional Hazard model, I found that it does not event accommodate variables which change over time (its good for differentiating between static attributes like gender and ethnicity)- so it seems very much geared toward a different question than mine.
Decision Tree Style
This seems promising though I can't completely wrap my mind around how to structure the data. Since the data is not flat, is the tree modeling the chance of moving from one state to another down the line and when it leads to conversion or not? This is very different than the decision tree data literature I've been able to find.
Also, need clarity on how to identify patterns which lead to conversion instead a models predicts likely hood of conversion after a given sequence.
Theoretically, hidden markov models may be a suitable solution to your problem. The features on your site would constitute the alphabet, and you can use the sequence of interactions as positive or negative instances depending on whether a user finally subscribed or not. I don't have a guess about what the number of hidden states should be, but finding a suitable value for that parameter is part of the problem, after all.
As a side note, positive instances are trivial to identify, but the fact that a user has not subscribed so far doesn't necessarily mean s/he won't. You might consider to limit your data to sufficiently old users.
I would also consider converting the data to fixed-length vectors and apply conceptually simpler models that could give you some intuition about what's going on. You could use n-grams (consecutive interaction sequences of length n).
As an example, assuming that the interaction sequence of a given user ise "f1,f3,f5", "f1,f3,f5" would constitute a 3-gram (trigram). Similarly, for the same user and the same interaction sequence you would have "f1,f3" and "f3,f5" as the 2-grams (bigrams). In order to represent each user as a vector, you would identify all n-grams up to a practical n, and count how many times the user employed a given n-gram. Each column in the vector would represent the number of times a given n-gram is observed for a given user.
Then -- probably with the help of some suitable normalization techniques such as pointwise mutual information or tf-idf -- you could look at the correlation between the n-grams and the final outcome to get a sense of what's going on, carry out feature selection to find the most prominent sequences that users are involved in, or apply classification methods such as nearest neighbor, support machine or naive Bayes to build a predictive model.
This is rather like a survival analysis problem: over time the user will convert or will may drop out of the population, or will continue to appear in the data and not (yet) fall into neither camp. For that, you may find the Cox proportional hazards model useful.
If you wish to pursue things from a different angle, namely one more from the graphical models perspective, then a Kalman Filter may be more appealing. It is a generalization of HMMs, suggested by #AmaçHerdağdelen, which work for continuous spaces.
For ease of implementation, I'd recommend the survival approach. It is the easiest to analyze, describe, and improve. After you have a firm handle on the data, feel free to drop in other methods.
Other than Markov chains, I would suggest decision trees or Bayesian networks. Both of these would give you a likely hood of a user converting after a sequence.
I forgot to mention this earlier. You may also want to take a look at the Google PageRank algorithm. It would help you account for the user completely disappearing [not subscribing]. The results of that would help you to encourage certain features to be used. [Because they're more likely to give you a sale]
I think Ngramm is most promising approach, because all sequnce in data mining are treated as elements depndent on few basic steps(HMM, CRF, ACRF, Markov Fields) So I will try to use classifier based on 1-grams and 2 -grams.

Resources