ThreadPoolExecutor and ArrayBlockingQueue - runnable

Excuse me for my bad english.
When the number of threads in the pool to rise above 10, the the task will be placed in ArrayBlockingQueue . But if the task Callable? Constructor ThreadPoolExecutor not accept ArrayBlockingQueue typed as Callable. How, then, will be added to the queue the task?
ExecutorService executorService = new ThreadPoolExecutor(2, 10,
60L, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(100));

What happens is that ThreadPoolExecutor does not add your Callable to the queue directly. Instead, it will wrap the Callable into a RunnableFuture
via a call to the method AbstractExecutorService.newTaskFor(Callable), then add this RunnableFutureto the queue.

Related

Kotlin coroutines multithread dispatcher and thread-safety for local variables

Let's consider this simple code with coroutines
import kotlinx.coroutines.*
import java.util.concurrent.Executors
fun main() {
runBlocking {
launch (Executors.newFixedThreadPool(10).asCoroutineDispatcher()) {
var x = 0
val threads = mutableSetOf<Thread>()
for (i in 0 until 100000) {
x++
threads.add(Thread.currentThread())
yield()
}
println("Result: $x")
println("Threads: $threads")
}
}
}
As far as I understand this is quite legit coroutines code and it actually produces expected results:
Result: 100000
Threads: [Thread[pool-1-thread-1,5,main], Thread[pool-1-thread-2,5,main], Thread[pool-1-thread-3,5,main], Thread[pool-1-thread-4,5,main], Thread[pool-1-thread-5,5,main], Thread[pool-1-thread-6,5,main], Thread[pool-1-thread-7,5,main], Thread[pool-1-thread-8,5,main], Thread[pool-1-thread-9,5,main], Thread[pool-1-thread-10,5,main]]
The question is what makes these modifications of local variables thread-safe (or is it thread-safe?). I understand that this loop is actually executed sequentially but it can change the running thread on every iteration. The changes done from thread in first iteration still should be visible to the thread that picked up this loop on second iteration. Which code does guarantee this visibility? I tried to decompile this code to Java and dig around coroutines implementation with debugger but did not find a clue.
Your question is completely analogous to the realization that the OS can suspend a thread at any point in its execution and reschedule it to another CPU core. That works not because the code in question is "multicore-safe", but because it is a guarantee of the environment that a single thread behaves according to its program-order semantics.
Kotlin's coroutine execution environment likewise guarantees the safety of your sequential code. You are supposed to program to this guarantee without any worry about how it is maintained.
If you want to descend into the details of "how" out of curiosity, the answer becomes "it depends". Every coroutine dispatcher can choose its own mechanism to achieve it.
As an instructive example, we can focus on the specific dispatcher you use in your posted code: JDK's fixedThreadPoolExecutor. You can submit arbitrary tasks to this executor, and it will execute each one of them on a single (arbitrary) thread, but many tasks submitted together will execute in parallel on different threads.
Furthermore, the executor service provides the guarantee that the code leading up to executor.execute(task) happens-before the code within the task, and the code within the task happens-before another thread's observing its completion (future.get(), future.isCompleted(), getting an event from the associated CompletionService).
Kotlin's coroutine dispatcher drives the coroutine through its lifecycle of suspension and resumption by relying on these primitives from the executor service, and thus you get the "sequential execution" guarantee for the entire coroutine. A single task submitted to the executor ends whenever the coroutine suspends, and the dispatcher submits a new task when the coroutine is ready to resume (when the user code calls continuation.resume(result)).

Is at a good idea to use ThreadPoolExecutor with one worker?

I have a simple rest service which allows you to create task. When a client requests a task - it returns a unique task number and starts executing in a separate thread. The easiest way to implement it
class Executor:
def __init__(self, max_workers=1):
self.executor = ThreadPoolExecutor(max_workers)
def execute(self, body, task_number):
# some logic
pass
def some_rest_method(request):
body = json.loads(request.body)
task_id = generate_task_id()
Executor(max_workers=1).execute(body)
return Response({'taskId': task_id})
Is it a good idea to create each time ThreadPoolExecutor with one (!) workers if i know than one request - is one new task (new thread). Perhaps it is worth putting them in the queue somehow? Maybe the best option is to create a regular stream every time?
Is it a good idea to create each time ThreadPoolExecutor...
No. That completely defeats the purpose of a thread pool. The reason for using a thread pool is so that you don't create and destroy a new thread for every request. Creating and destroying threads is expensive. The idea of a thread pool is that it keeps the "worker thread(s)" alive and re-uses it/them for each next request.
...with just one thread
There's a good use-case for a single-threaded executor, though it probably does not apply to your problem. The use-case is, you need a sequence of tasks to be performed "in the background," but you also need them to be performed sequentially. A single-thread executor will perform the tasks, one after another, in the same order that they were submitted.
Perhaps it is worth putting them in the queue somehow?
You already are putting them in a queue. Every thread pool has a queue of pending tasks. When you submit a task (i.e., executor.execute(...)) that puts the task into the queue.
what's the best way...in my case?
The bones of a simplistic server look something like this (pseudo-code):
POOL = ThreadPoolExecutor(...with however many threads seem appropriate...)
def service():
socket = create_a_socket_that_listens_on_whatever_port()
while True:
client_connection = socket.accept()
POOL.submit(request_handler, connection=connection)
def request_handler(connection):
request = receive_request_from(connection)
reply = generate_reply_based_on(request)
send_reply_to(reply, connection)
connection.close()
def main():
initialize_stuff()
service()
Of course, there are many details that I have left out. I can't design it for you. Especially not in Python. I've written servers like this in other languages, but I'm pretty new to Python.

When using asyncio.run, how do I submit the threadpool executor to the event loop?

In the Python documentation, it states:
Application developers should typically use the high-level asyncio
functions, such as asyncio.run(), and should rarely need to reference
the loop object or call its methods.
Consider also using the asyncio.run() function instead of using lower
level functions to manually create and close an event loop.
If I need to use asyncio and a ThreadPoolExecutor, how would I submit the executor to the event loop?
Normally you could do:
# Create a limited thread pool.
executor = concurrent.futures.ThreadPoolExecutor(
max_workers=3,
)
event_loop = asyncio.get_event_loop()
try:
event_loop.run_until_complete(
run_blocking_tasks(executor)
)
finally:
event_loop.close()

Can you create a separate QThread class and only call a specific function from it?

I have tried to read as much as I can about PyQt4's QThread and the idea of the worker thread. My question is, instead of building a QThread class to run everything in it from the def run(self): by the blahblah.start() command is there a way to create that individual thread class that has,say, 4 functions and you only call function 2 and then close that thread right after?
Subclassing QThread is a practice that is in general discouraged although often used. [see comment below]
In my opinion, this is a good example of how to use a thread in pyqt. You would create a Worker and a Thread, where the Worker is some general class of type QObject and the Thread is a QThread which you do not subclass. You'd then move the Worker to the Threat and start it.
self.worker = WorkerObject()
self.worker_thread = QtCore.QThread()
self.worker.moveToThread(self.worker_thread)
self.worker_thread.start()
Inside the Worker you can basically do whatever you want, it can have arbitrary many methods and so on.
The one big thing to keep in mind is that the Worker needs to be separate from the main loop. So the methods should not return anything that is used in the main loop (better not return anything at all) and the Worker's results should be collected using signals and slots.
self.button_start.clicked.connect(self.worker.startWork)
self.button_do_something_else.clicked.connect(self.worker.function2)
self.worker.signalStatus.connect(self.updateStatus)
Also make sure not to use any PyQt/GUI objects inside the worker, as this would also build a bridge between Worker and main loop through PyQt itself.

Asynchronous IO in Scala with futures

Let's say I'm getting a (potentially big) list of images to download from some URLs. I'm using Scala, so what I would do is :
import scala.actors.Futures._
// Retrieve URLs from somewhere
val urls: List[String] = ...
// Download image (blocking operation)
val fimages: List[Future[...]] = urls.map (url => future { download url })
// Do something (display) when complete
fimages.foreach (_.foreach (display _))
I'm a bit new to Scala, so this still looks a little like magic to me :
Is this the right way to do it? Any alternatives if it is not?
If I have 100 images to download, will this create 100 threads at once, or will it use a thread pool?
Will the last instruction (display _) be executed on the main thread, and if not, how can I make sure it is?
Thanks for your advice!
Use Futures in Scala 2.10. They were joint work between the Scala team, the Akka team, and Twitter to reach a more standardized future API and implementation for use across frameworks. We just published a guide at: http://docs.scala-lang.org/overviews/core/futures.html
Beyond being completely non-blocking (by default, though we provide the ability to do managed blocking operations) and composable, Scala's 2.10 futures come with an implicit thread pool to execute your tasks on, as well as some utilities to manage time outs.
import scala.concurrent.{future, blocking, Future, Await, ExecutionContext.Implicits.global}
import scala.concurrent.duration._
// Retrieve URLs from somewhere
val urls: List[String] = ...
// Download image (blocking operation)
val imagesFuts: List[Future[...]] = urls.map {
url => future { blocking { download url } }
}
// Do something (display) when complete
val futImages: Future[List[...]] = Future.sequence(imagesFuts)
Await.result(futImages, 10 seconds).foreach(display)
Above, we first import a number of things:
future: API for creating a future.
blocking: API for managed blocking.
Future: Future companion object which contains a number of useful methods for collections of futures.
Await: singleton object used for blocking on a future (transferring its result to the current thread).
ExecutionContext.Implicits.global: the default global thread pool, a ForkJoin pool.
duration._: utilities for managing durations for time outs.
imagesFuts remains largely the same as what you originally did- the only difference here is that we use managed blocking- blocking. It notifies the thread pool that the block of code you pass to it contains long-running or blocking operations. This allows the pool to temporarily spawn new workers to make sure that it never happens that all of the workers are blocked. This is done to prevent starvation (locking up the thread pool) in blocking applications. Note that the thread pool also knows when the code in a managed blocking block is complete- so it will remove the spare worker thread at that point, which means that the pool will shrink back down to its expected size.
(If you want to absolutely prevent additional threads from ever being created, then you ought to use an AsyncIO library, such as Java's NIO library.)
Then we use the collection methods of the Future companion object to convert imagesFuts from List[Future[...]] to a Future[List[...]].
The Await object is how we can ensure that display is executed on the calling thread-- Await.result simply forces the current thread to wait until the future that it is passed is completed. (This uses managed blocking internally.)
val all = Future.traverse(urls){ url =>
val f = future(download url) /*(downloadContext)*/
f.onComplete(display)(displayContext)
f
}
Await.result(all, ...)
Use scala.concurrent.Future in 2.10, which is RC now.
which uses an implicit ExecutionContext
The new Future doc is explicit that onComplete (and foreach) may evaluate immediately if the value is available. The old actors Future does the same thing. Depending on what your requirement is for display, you can supply a suitable ExecutionContext (for instance, a single thread executor). If you just want the main thread to wait for loading to complete, traverse gives you a future to await on.
Yes, seems fine to me, but you may want to investigate more powerful twitter-util or Akka Future APIs (Scala 2.10 will have a new Future library in this style).
It uses a thread pool.
No, it won't. You need to use the standard mechanism of your GUI toolkit for this (SwingUtilities.invokeLater for Swing or Display.asyncExec for SWT). E.g.
fimages.foreach (_.foreach(im => SwingUtilities.invokeLater(new Runnable { display im })))

Resources