I have an RMI cluster. Each RMI server has a Spark context.
Is there any way to share an RDD between different Spark contexts?
As already stated by Daniel Darabos it is not possible. Every distributed object in Spark is bounded to specific context which has been used to create it (SparkContext in case of RDD, SQLContext in case of DataFrame dataset). If you want share objects between applications you have to use shared contexts (see for example spark-jobserver, Livy, or Apache Zeppelin). Since RDD or DataFrame is just a small local object there is really not much to share.
Sharing data is a completely different problem. You can use specialized in memory cache (Apache Ignite) or distributed in memory file systems (like Alluxio - former Tachyon) to minimize the latency when switching between application but you cannot really avoid it.
No, an RDD is tied to a single SparkContext. The general idea is that you have a Spark cluster and one driver program that tells the cluster what to do. This driver would have the SparkContext and kick off operations on the RDDs.
If you want to just move an RDD from one driver program to another, the solution is to write it to disk (S3/HDFS/...) in the first driver and load it from disk in the other driver.
You cant natively, in my understanding, RDD is not data, but a way to create data via transformations/filters from original data.
Another idea, is to share the final data instead. So, you will store the RDD in a data-store, such as :
- HDFS (a parquet file etc..)
- Elasticsearch
- Apache Ignite (in-memory)
I think you will love Apache Ignite: https://ignite.apache.org/features/igniterdd.html
Apache Ignite provides an implementation of Spark RDD abstraction
which allows to easily share state in memory across multiple Spark
jobs, either within the same application or between different Spark
applications.
IgniteRDD is implemented is as a view over a distributed Ignite cache,
which may be deployed either within the Spark job executing process,
or on a Spark worker, or in its own cluster.
(I let you dig their documentation to find what you are looking for.)
Related
Is distributed file storage(HDFS/Cassandra/S3 etc.) mandatory for spark to run in clustered mode? if yes, why?
Spark is distributed data processing engine used for computing huge volumes of data. Let's say I have huge volume of data stored in mysql which I want to perform processing on. Spark reads the data from mysql and perform in-memory (or disk) computation on the cluster nodes itself. I am still not able to understand why is distributed file storage needed to run spark in a clustered mode?
is distributed file storage(HDFS/Cassandra/S3 etc.) mandatory for spark to run in clustered mode?
Pretty Much
if yes, why?
Because the spark workers take input from a shared table, distribute the computation amongst themselves, then are choreographed by the spark driver to write their data back to another shared table.
If you are trying to work exclusively with mysql you might be able to use the local filesystem ("file://) as the cluster FS. However, if any RDD or stage in a spark query does try to use a shared filesystem as a way of committing work, the output isn't going to propagate from the workers (which will have written to their local filesystem) and the spark driver (which can only read its local filesystem)
I have a DSE cluster where every node in the cluster has both spark and Cassandra running.
When I load data from Cassandra to spark Rdd and do some action on the rdd, i know the data would be distributed into multi nodes. In my case, I want to write these rdds from every node to its local Cassandra dB table directly, is there anyway to do it.
If I do normal rdd collect, all data from spark nodes would be merged and go back to node with driver.
I do not want this to happen as the data flow from nodes back to driver node may take Long time, I want the data been save to local node directly to avoid the data movement across the spark nodes.
When Spark executor is reading data from Cassandra it's sending request to the "best node" that is selected based on the different factors:
When Spark is collocated with Cassandra, then Spark is trying to pull data from the same node
When Spark is on different node, then it's using token-aware routing, and read data from multiple nodes in parallel, as it's defined by the partition ranges.
When it's comes to the writing, and you have multiple executors, then each executor is opening multiple connections to each node, and writing the data using the token-aware routing, meaning that data is sent directly to one of the replicas. Also, Spark is trying to batch multiple rows that are belonging to the same partition into an UNLOGGED BATCH as it's more performant. Even if the Spark partition is colocated with the Cassandra partition, writing could involve an additional network overhead as SCC is writing using the consistency level TWO.
You can get colocated data if you re-partitioned the data to match Cassandra's partitioning), but such re-partition may induce Spark shuffle that could be much more heavyweight compared to the writing data from executor to another node.
P.S. You can find a lot of additional information about Spark Cassandra Connector in the Russell Spitzer's blog.
A word of warning: i only use Cassandra and Spark as separate open source projects, i do not have expertise with DSE.
I am afraid the data need to hit the network to replicate, even when every spark node talks to its local cassandra node.
Without replication and running a Spark job to make sure all data is hashed and preshuffled to the corresponding Cassandra node, it should be possible to use 127.0.0.1:9042 and avoid the network.
I am trying to understand if spark is an alternative to the vanilla MapReduce approach for analysis of BigData. Since spark saves the operations on the data in the memory so while using the HDFS as storage system for spark , does it take the advantage of distributed storage of the HDFS? For instance suppose i have 100GB CSV file stored in HDFS, now i want to do analysis on it. If i load that from HDFS to spark , will spark load the complete data in-memory to do the transformations or it will use the distributed environment for doing its jobs that HDFS provides for Storage which is leveraged by the MapReduce programs written in hadoop. If not then what is the advantage of using spark over HDFS ?
PS: I know spark spills on the disks if there is RAM overflow but does this spill occur for data per node(suppose 5 GB per node) of the cluster or for the complete data(100GB)?
Spark jobs can be configured to spill to local executor disk, if there is not enough memory to read your files. Or you can enable HDFS snapshots and caching between Spark stages.
You mention CSV, which is just a bad format to have in Hadoop in general. If you have 100GB of CSV, you could just as easily have less than half that if written in Parquet or ORC...
At the end of the day, you need some processing engine, and some storage layer. For example, Spark on Mesos or Kubernetes might work just as well as on YARN, but those are separate systems, and are not bundled and tied together as nicely as HDFS and YARN. Plus, like MapReduce, when using YARN, you are moving the execution to the NodeManagers on the datanodes, rather than pulling over data over the network, which you would be doing with other Spark execution modes. The NameNode and ResourceManagers coordinate this communication for where data is stored and processed
If you are convinced that MapReduceV2 can be better than Spark, I would encourage looking at Tez instead
While exploring various tools like [Nifi, Gobblin etc.], I have observed that Databricks is now promoting for using Spark for data ingestion/on-boarding.
We have a spark[scala] based application running on YARN. So far we are working on a hadoop and spark cluster where we manually place required data files in HDFS first and then run our spark jobs later.
Now when we are planning to make our application available for the client we are expecting any type and number of files [mainly csv, jason, xml etc.] from any data source [ftp, sftp, any relational and nosql database] of huge size [ranging from GB to PB].
Keeping this in mind we are looking for options which could be used for data on-boarding and data sanity before pushing data into HDFS.
Options which we are looking for based on priority:
1) Spark for data ingestion and sanity: As our application is written and is running on spark cluster, we are planning to use the same for data ingestion and sanity task as well.
We are bit worried about Spark's support for many datasources/file types/etc. Also, we are not sure if we try to copy data from let's say any FTP/SFTP then will all workers will write data on HDFS in parallel? Is there any limitation while using it? Is there any Audit trail maintained by Spark while this data copy?
2) Nifi in clustered mode: How good Nifi would be for this purpose? Can it be used for any datasource and for any size of file? Will be maintain the Audit trail? Would Nifi we able to handle such large files? How large cluster would be required in case we try to copy GB - PB of data and perform certain sanity on top of that data before pushing it to HDFS?
3) Gobblin in clustered mode: Would like to hear similar answers as that for Nifi?
4) If at all there is any other good option available for this purpose with lesser infra/cost involved and better performance?
Any guidance/pointers/comparisions for above mentioned tools and technologies would be appreciated.
Best Regards,
Bhupesh
After doing certain R&D and considering the fact that using NIFI or goblin will demand for more infrastructure cost. I have started testing Spark for data on-boarding.
SO far I have tried using Spark job for importing data [present at a remote staging area/node] into my HDFS and I am able to do that by mounting that remote location with all my spark cluster worker nodes. Doing this made that location local to those workers, hence spark job ran properly and data is on-boarded to my HDFS.
Since my whole project is going to be on Spark, hence keeping data on-boarding part on spark would not cost anything extra to me. So far I am going good. Hence I would suggest to others as well, if you already have spark cluster and hadoop cluster up and running then instead of adding extra cost [where cost could be a major constraint] go for spark job for data on-boarding.
What is the best way to share spark RDD data between two spark jobs.
I have a case where job 1: Spark Sliding window Streaming App, will be consuming data at regular intervals and creating RDD. This we do not want to persist to storage.
Job 2: Query job that will access the same RDD created in job 1 and generate reports.
I have seen few queries where they were suggesting SPARK Job Server, but as it is a open source not sure if it a possible solution, but any pointers will be of great help.
thankyou !
The short answer is you can't share RDD's between jobs. The only way you can share data is to write that data to HDFS and then pull it within the other job. If speed is an issue and you want to maintain a constant stream of data you can use HBase which will allow for very fast access and processing from the second job.
To get a better idea you should look here:
Serializing RDD
You can share RDDs across different applications using Apache Ignite.
Apache ignite provides an abstraction to share the RDDs through which applications can access the RDDs corresponding to different applications. In addition Ignite has the support for SQL indexes, where as native Spark doesn't.
Please refer https://ignite.apache.org/features/igniterdd.html for more details.
According to the official document describes:
Note that none of the modes currently provide memory sharing across applications. If you would like to share data this way, we recommend running a single server application that can serve multiple requests by querying the same RDDs.
http://spark.apache.org/docs/latest/job-scheduling.html
You can save to a temporary view. Table will be available to other sessions until the one that creates it is closed